metadata
model-index:
- name: twitter-roberta-base-hate-multiclass-latest
results: []
language:
- en
pipeline_tag: text-classification
cardiffnlp/twitter-roberta-base-hate-multiclass-latest
This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2022-154m for multiclass hate-speech classification. A combination of 13 different hate-speech datasets in the English language were used to fine-tune the model.
Classes available
{
"sexism": 0,
"racism": 1,
"disability": 2,
"sexual_orientation": 3,
"religion": 4,
"other": 5,
"not_hate":6
}
Following metrics are achieved
- Accuracy: 0.9419
- Macro-F1: 0.5752
- Weighted-F1: 0.9390
Usage
Install tweetnlp via pip.
pip install tweetnlp
Load the model in python.
import tweetnlp
model = tweetnlp.Classifier("cardiffnlp/twitter-roberta-base-hate-latest")
model.predict('Women are trash 2.')
>> {'label': 'sexism'}
model.predict('@user dear mongoloid respect sentiments & belief refrain totalitarianism. @user')
>> {'label': 'disability'}
Model based on:
@misc{antypas2023robust,
title={Robust Hate Speech Detection in Social Media: A Cross-Dataset Empirical Evaluation},
author={Dimosthenis Antypas and Jose Camacho-Collados},
year={2023},
eprint={2307.01680},
archivePrefix={arXiv},
primaryClass={cs.CL}
}