|
# Twitter-roBERTa-base |
|
|
|
This is a roBERTa-base model trained on ~58M tweets and finetuned for the irony prediction task at Semeval 2018. |
|
For full description: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). |
|
To evaluate this and other models on Twitter-specific data, please refer to the [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). |
|
|
|
## Example of classification |
|
|
|
```python |
|
from transformers import AutoModelForSequenceClassification |
|
from transformers import TFAutoModelForSequenceClassification |
|
from transformers import AutoTokenizer |
|
import numpy as np |
|
from scipy.special import softmax |
|
import csv |
|
import urllib.request |
|
|
|
# Tasks: |
|
# emoji, emotion, hate, irony, offensive, sentiment |
|
# stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary |
|
|
|
task='irony' |
|
MODEL = f"cardiffnlp/twitter-roberta-base-{task}" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL) |
|
|
|
# download label mapping |
|
labels=[] |
|
mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" |
|
with urllib.request.urlopen(mapping_link) as f: |
|
html = f.read().decode('utf-8').split("\n") |
|
spamreader = csv.reader(html[:-1], delimiter='\t') |
|
labels = [row[1] for row in spamreader] |
|
|
|
# PT |
|
model = AutoModelForSequenceClassification.from_pretrained(MODEL) |
|
model.save_pretrained(MODEL) |
|
|
|
text = "Good night π" |
|
encoded_input = tokenizer(text, return_tensors='pt') |
|
output = model(**encoded_input) |
|
scores = output[0][0].detach().numpy() |
|
scores = softmax(scores) |
|
|
|
# # TF |
|
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) |
|
# model.save_pretrained(MODEL) |
|
|
|
# text = "Good night π" |
|
# encoded_input = tokenizer(text, return_tensors='tf') |
|
# output = model(encoded_input) |
|
# scores = output[0][0].numpy() |
|
# scores = softmax(scores) |
|
|
|
ranking = np.argsort(scores) |
|
ranking = ranking[::-1] |
|
for i in range(scores.shape[0]): |
|
l = labels[ranking[i]] |
|
s = scores[ranking[i]] |
|
print(f"{i+1}) {l} {np.round(float(s), 4)}") |
|
|
|
``` |
|
|
|
Output: |
|
|
|
``` |
|
1) π 0.2637 |
|
2) β€οΈ 0.1952 |
|
3) π 0.1171 |
|
4) β¨ 0.0927 |
|
5) π 0.0756 |
|
6) π 0.046 |
|
7) π 0.0444 |
|
8) π 0.0272 |
|
9) π 0.0228 |
|
10) π 0.0198 |
|
11) π 0.0166 |
|
12) π 0.0132 |
|
13) π 0.0131 |
|
14) β 0.0112 |
|
15) π 0.009 |
|
16) π― 0.009 |
|
17) π₯ 0.008 |
|
18) π· 0.0057 |
|
19) πΊπΈ 0.005 |
|
20) πΈ 0.0048 |
|
``` |
|
|