TimeLMs
Collection
Language Models specialised on social media, trained on different time periods.
โข
15 items
โข
Updated
This is a RoBERTa-base model trained on 168.86M tweets until the end of September 2022 (15M tweets increment). More details and performance scores are available in the TimeLMs paper.
Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.
For other models trained until different periods, check this table.
Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed here.
def preprocess(text):
preprocessed_text = []
for t in text.split():
if len(t) > 1:
t = '@user' if t[0] == '@' and t.count('@') == 1 else t
t = 'http' if t.startswith('http') else t
preprocessed_text.append(t)
return ' '.join(preprocessed_text)
from transformers import pipeline, AutoTokenizer
MODEL = "cardiffnlp/twitter-roberta-base-sep2022"
fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL)
tokenizer = AutoTokenizer.from_pretrained(MODEL)
def pprint(candidates, n):
for i in range(n):
token = tokenizer.decode(candidates[i]['token'])
score = candidates[i]['score']
print("%d) %.5f %s" % (i+1, score, token))
texts = [
"So glad I'm <mask> vaccinated.",
"I keep forgetting to bring a <mask>.",
"Looking forward to watching <mask> Game tonight!",
]
for text in texts:
t = preprocess(text)
print(f"{'-'*30}\n{t}")
candidates = fill_mask(t)
pprint(candidates, 5)
Output:
------------------------------
So glad I'm <mask> vaccinated.
1) 0.60140 not
2) 0.15077 getting
3) 0.12119 fully
4) 0.02203 still
5) 0.01020 all
------------------------------
I keep forgetting to bring a <mask>.
1) 0.05812 charger
2) 0.05040 backpack
3) 0.05004 book
4) 0.04548 bag
5) 0.03992 lighter
------------------------------
Looking forward to watching <mask> Game tonight!
1) 0.39552 the
2) 0.28083 The
3) 0.02029 End
4) 0.01878 Squid
5) 0.01438 this
from transformers import AutoTokenizer, AutoModel, TFAutoModel
import numpy as np
from scipy.spatial.distance import cosine
from collections import Counter
def get_embedding(text): # naive approach for demonstration
text = preprocess(text)
encoded_input = tokenizer(text, return_tensors='pt')
features = model(**encoded_input)
features = features[0].detach().cpu().numpy()
return np.mean(features[0], axis=0)
MODEL = "cardiffnlp/twitter-roberta-base-sep2022"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModel.from_pretrained(MODEL)
query = "The book was awesome"
tweets = ["I just ordered fried chicken ๐ฃ",
"The movie was great",
"What time is the next game?",
"Just finished reading 'Embeddings in NLP'"]
sims = Counter()
for tweet in tweets:
sim = 1 - cosine(get_embedding(query), get_embedding(tweet))
sims[tweet] = sim
print('Most similar to: ', query)
print(f"{'-'*30}")
for idx, (tweet, sim) in enumerate(sims.most_common()):
print("%d) %.5f %s" % (idx+1, sim, tweet))
Output:
Most similar to: The book was awesome
------------------------------
1) 0.98914 The movie was great
2) 0.96194 Just finished reading 'Embeddings in NLP'
3) 0.94603 What time is the next game?
4) 0.94580 I just ordered fried chicken ๐ฃ
from transformers import AutoTokenizer, AutoModel, TFAutoModel
import numpy as np
MODEL = "cardiffnlp/twitter-roberta-base-sep2022"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
text = "Good night ๐"
text = preprocess(text)
# Pytorch
model = AutoModel.from_pretrained(MODEL)
encoded_input = tokenizer(text, return_tensors='pt')
features = model(**encoded_input)
features = features[0].detach().cpu().numpy()
features_mean = np.mean(features[0], axis=0)
#features_max = np.max(features[0], axis=0)
# # Tensorflow
# model = TFAutoModel.from_pretrained(MODEL)
# encoded_input = tokenizer(text, return_tensors='tf')
# features = model(encoded_input)
# features = features[0].numpy()
# features_mean = np.mean(features[0], axis=0)
# #features_max = np.max(features[0], axis=0)