|
--- |
|
language: |
|
- en |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
- nlu |
|
- intent-classification |
|
datasets: |
|
- AmazonScience/massive |
|
metrics: |
|
- accuracy |
|
- f1 |
|
pipeline_tag: text-classification |
|
base_model: microsoft/Multilingual-MiniLM-L12-H384 |
|
model-index: |
|
- name: multilingual_minilm-amazon-massive-intent |
|
results: |
|
- task: |
|
type: intent-classification |
|
name: intent-classification |
|
dataset: |
|
name: MASSIVE |
|
type: AmazonScience/massive |
|
split: test |
|
metrics: |
|
- type: f1 |
|
value: 0.8234 |
|
name: F1 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# multilingual_minilm-amazon-massive-intent |
|
|
|
This model is a fine-tuned version of [microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384) on the [MASSIVE1.1](https://huggingface.co/datasets/AmazonScience/massive) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8941 |
|
- Accuracy: 0.8234 |
|
- F1: 0.8234 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| |
|
| 3.7961 | 1.0 | 720 | 3.1657 | 0.3404 | 0.3404 | |
|
| 3.1859 | 2.0 | 1440 | 2.4835 | 0.4343 | 0.4343 | |
|
| 2.3104 | 3.0 | 2160 | 2.0474 | 0.5652 | 0.5652 | |
|
| 2.0071 | 4.0 | 2880 | 1.7190 | 0.6503 | 0.6503 | |
|
| 1.5595 | 5.0 | 3600 | 1.4873 | 0.6990 | 0.6990 | |
|
| 1.3664 | 6.0 | 4320 | 1.3088 | 0.7354 | 0.7354 | |
|
| 1.1272 | 7.0 | 5040 | 1.1964 | 0.7521 | 0.7521 | |
|
| 1.0128 | 8.0 | 5760 | 1.1115 | 0.7718 | 0.7718 | |
|
| 0.9405 | 9.0 | 6480 | 1.0598 | 0.7841 | 0.7841 | |
|
| 0.7758 | 10.0 | 7200 | 1.0003 | 0.7944 | 0.7944 | |
|
| 0.7457 | 11.0 | 7920 | 0.9599 | 0.8037 | 0.8037 | |
|
| 0.6605 | 12.0 | 8640 | 0.9175 | 0.8165 | 0.8165 | |
|
| 0.6135 | 13.0 | 9360 | 0.9148 | 0.8190 | 0.8190 | |
|
| 0.5698 | 14.0 | 10080 | 0.8976 | 0.8229 | 0.8229 | |
|
| 0.5578 | 15.0 | 10800 | 0.8941 | 0.8234 | 0.8234 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.13.0+cu116 |
|
- Datasets 2.7.1 |
|
- Tokenizers 0.13.2 |