metadata
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: nlp_til
results: []
nlp_til
This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1994
- Precision: 0.4726
- Recall: 0.5278
- F1: 0.4987
- Accuracy: 0.9007
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 18
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 219 | 0.2462 | 0.3017 | 0.3623 | 0.3292 | 0.8584 |
No log | 2.0 | 438 | 0.2436 | 0.3176 | 0.3485 | 0.3323 | 0.8656 |
0.2463 | 3.0 | 657 | 0.2434 | 0.3333 | 0.4792 | 0.3932 | 0.8622 |
0.2463 | 4.0 | 876 | 0.2402 | 0.3398 | 0.3567 | 0.3480 | 0.8675 |
0.2453 | 5.0 | 1095 | 0.2388 | 0.3299 | 0.3708 | 0.3491 | 0.8686 |
0.2453 | 6.0 | 1314 | 0.2381 | 0.3230 | 0.3740 | 0.3467 | 0.8689 |
0.2421 | 7.0 | 1533 | 0.2384 | 0.3448 | 0.3508 | 0.3477 | 0.8691 |
0.2421 | 8.0 | 1752 | 0.2343 | 0.3427 | 0.3711 | 0.3563 | 0.8705 |
0.2421 | 9.0 | 1971 | 0.2334 | 0.3448 | 0.3433 | 0.3440 | 0.8713 |
0.2388 | 10.0 | 2190 | 0.2314 | 0.3696 | 0.4533 | 0.4072 | 0.8768 |
0.2388 | 11.0 | 2409 | 0.2238 | 0.3846 | 0.4643 | 0.4207 | 0.8812 |
0.2337 | 12.0 | 2628 | 0.2216 | 0.3968 | 0.4703 | 0.4305 | 0.8832 |
0.2337 | 13.0 | 2847 | 0.2135 | 0.4169 | 0.4939 | 0.4521 | 0.8898 |
0.2268 | 14.0 | 3066 | 0.2117 | 0.4387 | 0.5200 | 0.4759 | 0.8919 |
0.2268 | 15.0 | 3285 | 0.2059 | 0.4565 | 0.5146 | 0.4838 | 0.8963 |
0.2197 | 16.0 | 3504 | 0.2043 | 0.4669 | 0.5359 | 0.4990 | 0.8977 |
0.2197 | 17.0 | 3723 | 0.2005 | 0.4701 | 0.5356 | 0.5007 | 0.8997 |
0.2197 | 18.0 | 3942 | 0.1994 | 0.4726 | 0.5278 | 0.4987 | 0.9007 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.0.1+cu117
- Datasets 2.19.1
- Tokenizers 0.19.1