nlp_til2 / README.md
casual's picture
End of training
17c995d verified
|
raw
history blame
3.07 kB
metadata
license: apache-2.0
base_model: casual/nlp_til2
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: nlp_til2
    results: []

nlp_til2

This model is a fine-tuned version of casual/nlp_til2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0041
  • Precision: 0.9920
  • Recall: 0.9923
  • F1: 0.9921
  • Accuracy: 0.9987

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 18

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 219 0.0286 0.9350 0.9281 0.9316 0.9896
No log 2.0 438 0.0277 0.9439 0.9235 0.9336 0.9899
0.0365 3.0 657 0.0296 0.9127 0.9300 0.9213 0.9890
0.0365 4.0 876 0.0267 0.9232 0.9404 0.9317 0.9900
0.0332 5.0 1095 0.0205 0.9451 0.9599 0.9524 0.9929
0.0332 6.0 1314 0.0165 0.9725 0.9542 0.9633 0.9942
0.0293 7.0 1533 0.0145 0.9729 0.9579 0.9653 0.9946
0.0293 8.0 1752 0.0156 0.9577 0.9658 0.9617 0.9944
0.0293 9.0 1971 0.0111 0.9756 0.9737 0.9746 0.9961
0.0237 10.0 2190 0.0091 0.9773 0.9803 0.9788 0.9968
0.0237 11.0 2409 0.0088 0.9750 0.9803 0.9777 0.9968
0.0199 12.0 2628 0.0068 0.9888 0.9848 0.9868 0.9978
0.0199 13.0 2847 0.0070 0.9835 0.9847 0.9841 0.9977
0.0201 14.0 3066 0.0074 0.9834 0.9861 0.9848 0.9976
0.0201 15.0 3285 0.0051 0.9869 0.9889 0.9879 0.9983
0.0257 16.0 3504 0.0040 0.9921 0.9913 0.9917 0.9987
0.0257 17.0 3723 0.0045 0.9911 0.9922 0.9916 0.9987
0.0257 18.0 3942 0.0041 0.9920 0.9923 0.9921 0.9987

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.19.1
  • Tokenizers 0.19.1