metadata
base_model:
- catrinbaze/llama-refueled-merge
- NousResearch/Meta-Llama-3-8B-instruct
- Locutusque/Llama-3-Orca-1.0-8B
- lighteternal/Llama3-merge-biomed-8b
- mlabonne/NeuralDaredevil-8B-abliterated
- mlabonne/Daredevil-8B
tags:
- merge
- mergekit
- lazymergekit
- catrinbaze/llama-refueled-merge
- NousResearch/Meta-Llama-3-8B-instruct
- Locutusque/Llama-3-Orca-1.0-8B
- lighteternal/Llama3-merge-biomed-8b
- mlabonne/NeuralDaredevil-8B-abliterated
- mlabonne/Daredevil-8B
merge-llama-3-8b
merge-llama-3-8b is a merge of the following models using LazyMergekit:
- catrinbaze/llama-refueled-merge
- NousResearch/Meta-Llama-3-8B-instruct
- Locutusque/Llama-3-Orca-1.0-8B
- lighteternal/Llama3-merge-biomed-8b
- mlabonne/NeuralDaredevil-8B-abliterated
- mlabonne/Daredevil-8B
🧩 Configuration
slices:
models:
- model: NousResearch/Meta-Llama-3-8B
# No parameters necessary for base model
- model: catrinbaze/llama-refueled-merge
parameters:
density: 0.6
weight: 0.6
- model: NousResearch/Meta-Llama-3-8B-instruct
parameters:
density: 0.58
weight: 0.2
- model: Locutusque/Llama-3-Orca-1.0-8B
parameters:
density: 0.56
weight: 0.05
- model: lighteternal/Llama3-merge-biomed-8b
parameters:
density: 0.56
weight: 0.05
- model: mlabonne/NeuralDaredevil-8B-abliterated
parameters:
density: 0.55
weight: 0.05
- model: mlabonne/Daredevil-8B
parameters:
density: 0.55
weight: 0.05
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3-8B
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "catrinbaze/merge-llama-3-8b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])