cattoroboto's picture
Update README.md
f61ac1a verified
metadata
base_model: google/gemma-2-9b
library_name: peft
license: gemma
tags:
  - generated_from_trainer
model-index:
  - name: outputs/out
    results: []
datasets:
  - NousResearch/CharacterCodex

This is a test qlora! 🙀

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: google/gemma-2-9b
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false

# huggingface repo
chat_template: gemma
datasets:
  - path: NousResearch/CharacterCodex
    type: completion
#    chat_template: gemma
#    drop_system_message: true
    field: description
val_set_size: 0.0
output_dir: ./outputs/out

adapter: qlora
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true

sequence_len: 2048
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:


gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.1
evals_per_epoch:
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

outputs/out

This model is a fine-tuned version of google/gemma-2-9b on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 23
  • num_epochs: 2

Training results

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.3
  • Pytorch 2.1.2+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1