Edit model card

fine_tuned_main_raid

This model is a fine-tuned version of FacebookAI/roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0407
  • Accuracy: 0.9922

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3543 0.0767 100 0.1765 0.9655
0.1516 0.1534 200 0.1955 0.9724
0.1415 0.2301 300 0.1323 0.9724
0.2002 0.3067 400 0.0993 0.9716
0.1057 0.3834 500 0.2031 0.9552
0.0734 0.4601 600 0.1010 0.9802
0.0725 0.5368 700 0.1511 0.9767
0.1326 0.6135 800 0.0607 0.9879
0.0667 0.6902 900 0.0734 0.9845
0.1132 0.7669 1000 0.0878 0.9819
0.0731 0.8436 1100 0.0694 0.9888
0.0678 0.9202 1200 0.0704 0.9853
0.0455 0.9969 1300 0.0522 0.9905
0.0656 1.0736 1400 0.0646 0.9871
0.0463 1.1503 1500 0.0407 0.9922
0.0432 1.2270 1600 0.0646 0.9897
0.0347 1.3037 1700 0.0421 0.9931
0.0361 1.3804 1800 0.0420 0.9931

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
6
Safetensors
Model size
355M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for charisgao/fine_tuned_main_raid_poetry

Finetuned
(285)
this model