charisgao's picture
raid_roberta
dd6599e verified
metadata
library_name: transformers
license: mit
base_model: FacebookAI/roberta-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: fine_tuned_raid_cleaned
    results: []

fine_tuned_raid_cleaned

This model is a fine-tuned version of FacebookAI/roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1136
  • Accuracy: 0.9800

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3826 0.0139 100 0.1739 0.9443
0.2556 0.0277 200 0.2700 0.9408
0.3383 0.0416 300 0.1667 0.9529
0.3672 0.0554 400 0.9354 0.7975
0.2223 0.0693 500 0.1584 0.9673
0.2197 0.0832 600 0.6363 0.8793
0.2873 0.0970 700 0.2169 0.9462
0.2201 0.1109 800 0.1366 0.9621
0.1695 0.1248 900 0.2912 0.9554
0.1912 0.1386 1000 0.2287 0.9542
0.131 0.1525 1100 0.1136 0.9800
0.1764 0.1663 1200 0.1770 0.9645
0.1195 0.1802 1300 0.1255 0.9755
0.09 0.1941 1400 0.1285 0.9758

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3