grc_odycy_joint_sm / lemmatizer.py
janko's picture
Update spaCy pipeline
ff9005a
import os
import json
from pathlib import Path
from typing import Dict, List, Literal, Optional, Union, Iterable
from typing_extensions import TypedDict, NotRequired
from spacy.language import Language
from spacy.pipeline import Pipe
from spacy.pipeline.lemmatizer import lemmatizer_score
from spacy.util import ensure_path
from spacy.tokens import Doc, Token
MATCH_ORDER = [
"upos",
"Tense",
"VerbForm",
"Voice",
"Case",
"Gender",
"Number",
"Degree",
"Mood",
"Person",
"Aspect",
"Definite",
"PronType",
"Polarity",
"Poss",
"Reflex",
]
class TableEntry(TypedDict):
form: str
lemma: str
upos: str
frequency: int
Tense: NotRequired[str]
VerbForm: NotRequired[str]
Voice: NotRequired[str]
Case: NotRequired[str]
Gender: NotRequired[str]
Number: NotRequired[str]
Degree: NotRequired[str]
Mood: NotRequired[str]
Person: NotRequired[str]
Aspect: NotRequired[str]
Definite: NotRequired[str]
PronType: NotRequired[str]
Polarity: NotRequired[str]
Poss: NotRequired[str]
Reflex: NotRequired[str]
FrequencyTable = Dict[str, List[TableEntry]]
LookupTable = Dict[str, str]
@Language.factory(
"frequency_lemmatizer",
assigns=["token.lemma"],
default_config={
"overwrite": True,
"fallback_priority": "lookup",
},
default_score_weights={"lemma_acc": 1.0},
)
def make_lemmatizer(
nlp: Language,
name: str,
overwrite: bool,
fallback_priority: Literal["lemma", "lookup"],
):
return FrequencyLemmatizer(
nlp=nlp,
name=name,
overwrite=overwrite,
fallback_priority=fallback_priority,
) # type: ignore
def max_freq_lemma(entries: List[TableEntry]) -> str:
"""Returns lemma with highest frequency from the given entries."""
max_index = 0
n_entries = len(entries)
for index in range(1, n_entries):
if entries[index]["frequency"] > entries[max_index]["frequency"]:
max_index = index
return entries[max_index]["lemma"]
def match_lemma(
token_entry: TableEntry, table: FrequencyTable
) -> Optional[str]:
"""Returns a lemma for a token if it
can be found in the frequency table.
"""
# Tries to find the entries associated with the token in the table
match = table.get(token_entry["form"], [])
if not match:
return None
# We go through all the properties to be matched
for match_property in MATCH_ORDER:
match_new = [
entry
for entry in match
if entry.get(match_property, "")
== token_entry.get(match_property, "")
]
if not match_new:
return max_freq_lemma(entries=match)
match = match_new
return max_freq_lemma(entries=match)
def read_json(path: str) -> Dict:
with open(path) as file:
res = json.load(file)
return res
def write_json(object: Dict, path: str) -> None:
with open(path, "w") as file:
json.dump(object, file)
class FrequencyLemmatizer(Pipe):
"""
Part-of-speech and morphology, and frequency
sensitive rule-based lemmatizer.
Parameters
----------
overwrite: bool, default True
Specifies whether the frequency lemmatizer should overwrite
already assigned lemmas.
fallback_priority: 'lemma' or 'lookup', default 'lookup'
Specifies which fallback should have higher priority
if the lemma is not found in
the primary table.
"""
def __init__(
self,
nlp: Language,
name: str = "freq_lemmatizer",
*,
overwrite: bool = True,
fallback_priority: Literal["lemma", "lookup"] = "lookup",
):
self.name = name
self.overwrite = overwrite
self.scorer = lemmatizer_score
self.fallback_priority = fallback_priority
def initialize(
self,
get_examples=None,
*,
nlp=None,
table: Optional[FrequencyTable] = None,
lookup: Optional[LookupTable] = None,
) -> None:
"""Initializes the frequency lemmatizer from given lemma table and lookup.
Parameters
----------
table: iterable of entries or None, default None
Iterable of all entries in the lemma table
with pos tags morph features and frequencies.
lookup: dict of str to str or None, default None
Backoff lookup table for simple token-lemma lookup.
"""
if table is None:
self.table = None
else:
self.table = table
self.lookup = lookup
def backoff(self, token: Token) -> str:
"""Gets backoff token based on priority."""
orth = token.orth_.lower()
lookup = self.lookup
in_lookup = (lookup is not None) and (orth in lookup)
priority = self.fallback_priority
has_lemma = (token.lemma != 0) and (token.lemma_ != token.orth_)
if in_lookup:
if priority == "lookup":
return lookup[orth] # type: ignore
else:
if has_lemma:
return token.lemma_
else:
return token.orth_
else:
if has_lemma:
return token.lemma_
else:
return token.orth_
def lemmatize(self, token: Token) -> str:
"""Lemmatizes token."""
backoff = self.backoff(token)
orth = token.orth_.lower()
# If the table is empty we early return
if self.table is None:
return backoff
# I only add frequency for type compatibility
token_entry: TableEntry = TableEntry(
form=orth, upos=token.pos_, frequency=-1, **token.morph.to_dict()
)
lemma = match_lemma(token_entry=token_entry, table=self.table)
if lemma is None:
return backoff
else:
return lemma
def __call__(self, doc: Doc) -> Doc:
"""Apply the lemmatization to a document."""
error_handler = self.get_error_handler()
try:
for token in doc:
if self.overwrite or token.lemma == 0:
token.lemma_ = self.lemmatize(token)
return doc
except Exception as e:
error_handler(self.name, self, [doc], e)
def to_disk(
self, path: Union[str, Path], *, exclude: Iterable[str] = tuple()
):
"""Save frequency lemmatizer data to a directory."""
path = ensure_path(path)
Path(path).mkdir(parents=True, exist_ok=True)
config = dict(
overwrite=self.overwrite, fallback_priority=self.fallback_priority
)
with open(os.path.join(path, "config.json"), "w") as config_file:
json.dump(config, config_file)
if self.table is not None:
table_path = os.path.join(path, "table.json")
write_json(self.table, path=table_path)
if self.lookup is not None:
lookup_path = os.path.join(path, "lookup.json")
write_json(self.lookup, path=lookup_path)
def from_disk(
self, path: Union[str, Path], *, exclude: Iterable[str] = tuple()
) -> "FrequencyLemmatizer":
"""Load component from disk."""
path = ensure_path(path)
config = read_json(os.path.join(path, "config.json"))
self.overwrite = config.get("overwrite", self.overwrite)
self.fallback_priority = config.get(
"fallback_priority", self.fallback_priority
)
try:
table: Optional[FrequencyTable] = read_json(
os.path.join(path, "table.json")
)
except FileNotFoundError:
table = None
try:
lookup: Optional[LookupTable] = read_json(
os.path.join(path, "lookup.json")
)
except FileNotFoundError:
lookup = None
self.initialize(table=table, lookup=lookup)
return self