|
---
|
|
license: mit
|
|
base_model:
|
|
- microsoft/Florence-2-large
|
|
datasets:
|
|
- Ejafa/ye-pop
|
|
tags:
|
|
- art
|
|
pipeline_tag: image-to-text
|
|
language:
|
|
- en
|
|
---
|
|
|
|
# microsoft/Florence-2-large tuned on Ejafa/ye-pop captioned with CogVLM2
|
|
|
|
This repository contains a fine-tuned version of the `microsoft/Florence-2-large` model. The model has been tuned on a 38,000 image subset of the `Ejafa/ye-pop` dataset, with captions generated using `THUDM/cogvlm2-llama3-chat-19B`.
|
|
|
|
## Training Details
|
|
|
|
- **Vision Encoder**: The vision encoder was frozen during training.
|
|
- **Batch Size**: 32
|
|
- **Gradient Accumulation Steps**: 8
|
|
- **Learning Rate**: 4.2667e-5
|
|
- **Optimizer**: AdamW
|
|
- **Scheduler**: linear
|
|
- **Epochs**: 7
|
|
|
|
## Dataset
|
|
|
|
The fine-tuning process utilized a 38,000 image subset from the `Ejafa/ye-pop` dataset. This dataset contains a wide array of images with varying subjects, providing a robust training ground for improving the model's captioning abilities.
|
|
|
|
## Captioning
|
|
|
|
The captions were generated using `THUDM/cogvlm2-llama3-chat-19B`.
|
|
|
|
## Usage
|
|
|
|
To use this model, you can load it directly from the Hugging Face Model Hub:
|
|
|
|
```python
|
|
from transformers import AutoModelForCausalLM, AutoProcessor, AutoConfig
|
|
import torch
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
model = AutoModelForCausalLM.from_pretrained("thwri/CogFlorence-2-Large-Freeze", trust_remote_code=True).to(device).eval()
|
|
processor = AutoProcessor.from_pretrained("thwri/CogFlorence-2-Large-Freeze", trust_remote_code=True)
|
|
|
|
# Function to run the model on an example
|
|
def run_example(task_prompt, image):
|
|
prompt = task_prompt
|
|
|
|
# Ensure the image is in RGB mode
|
|
if image.mode != "RGB":
|
|
image = image.convert("RGB")
|
|
|
|
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
|
|
generated_ids = model.generate(
|
|
input_ids=inputs["input_ids"],
|
|
pixel_values=inputs["pixel_values"],
|
|
max_new_tokens=1024,
|
|
num_beams=3,
|
|
do_sample=True
|
|
)
|
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
|
parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
|
|
return parsed_answer
|
|
|
|
from PIL import Image
|
|
import requests
|
|
import copy
|
|
|
|
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
result = run_example("<MORE_DETAILED_CAPTION>" , image)
|
|
print(result)
|
|
|
|
# {'<MORE_DETAILED_CAPTION>': 'a turquoise volkswagen beetle parked on a cobblestone street in front of a yellow wall with two wooden doors. the car's body is painted in a vibrant shade of teal, with a glossy finish that reflects the sunlight, and the wheels are polished with a silver hubcap. the building behind the car has a weathered, aged appearance, with visible cracks and peeling paint. the sky above is clear and blue, suggesting a sunny day.'}
|
|
``` |