|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: pegasus-multi_news-headline |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# pegasus-multi_news-headline |
|
|
|
This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4421 |
|
- Rouge1: 41.616 |
|
- Rouge2: 22.922 |
|
- Rougel: 35.2189 |
|
- Rougelsum: 35.3561 |
|
- Gen Len: 33.9532 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 1.6637 | 1.0 | 31200 | 1.4877 | 41.0996 | 22.579 | 34.9311 | 35.0611 | 34.3431 | |
|
| 1.4395 | 2.0 | 62400 | 1.4388 | 41.6075 | 22.8274 | 35.2051 | 35.3526 | 33.7965 | |
|
| 1.3137 | 3.0 | 93600 | 1.4421 | 41.616 | 22.922 | 35.2189 | 35.3561 | 33.9532 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.12.2 |
|
- Pytorch 1.9.0+cu111 |
|
- Datasets 1.14.0 |
|
- Tokenizers 0.10.3 |
|
|