File size: 6,356 Bytes
417c04e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
license: mit
base_model: xlm-roberta-large
tags:
- generated_from_trainer
model-index:
- name: xlm-roberta-large_ALL_BCE_new_data_multihead_19_shuffled_special_tokens
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-large_ALL_BCE_new_data_multihead_19_shuffled_special_tokens

This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8445
- F1 Macro 0.1: 0.0895
- F1 Macro 0.15: 0.1160
- F1 Macro 0.2: 0.1402
- F1 Macro 0.25: 0.1634
- F1 Macro 0.3: 0.1847
- F1 Macro 0.35: 0.2040
- F1 Macro 0.4: 0.2229
- F1 Macro 0.45: 0.2406
- F1 Macro 0.5: 0.2583
- F1 Macro 0.55: 0.2763
- F1 Macro 0.6: 0.2924
- F1 Macro 0.65: 0.3101
- F1 Macro 0.7: 0.3251
- F1 Macro 0.75: 0.3405
- F1 Macro 0.8: 0.3547
- F1 Macro 0.85: 0.3634
- F1 Macro 0.9: 0.3572
- F1 Macro 0.95: 0.2839
- Threshold 0: 0.8
- Threshold 1: 0.85
- Threshold 2: 0.9
- Threshold 3: 0.9
- Threshold 4: 0.8
- Threshold 5: 0.85
- Threshold 6: 0.8
- Threshold 7: 0.9
- Threshold 8: 0.9
- Threshold 9: 0.8
- Threshold 10: 0.95
- Threshold 11: 0.85
- Threshold 12: 0.9
- Threshold 13: 0.8
- Threshold 14: 0.9
- Threshold 15: 0.85
- Threshold 16: 0.85
- Threshold 17: 0.85
- Threshold 18: 0.9
- 0: 0.1543
- 1: 0.2738
- 2: 0.3791
- 3: 0.2915
- 4: 0.4439
- 5: 0.4944
- 6: 0.4463
- 7: 0.3216
- 8: 0.3402
- 9: 0.5410
- 10: 0.5665
- 11: 0.5310
- 12: 0.2331
- 13: 0.1319
- 14: 0.3899
- 15: 0.3173
- 16: 0.4432
- 17: 0.6120
- 18: 0.2342
- Max F1: 0.3634
- Mean F1: 0.3761

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 2024
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | F1 Macro 0.1 | F1 Macro 0.15 | F1 Macro 0.2 | F1 Macro 0.25 | F1 Macro 0.3 | F1 Macro 0.35 | F1 Macro 0.4 | F1 Macro 0.45 | F1 Macro 0.5 | F1 Macro 0.55 | F1 Macro 0.6 | F1 Macro 0.65 | F1 Macro 0.7 | F1 Macro 0.75 | F1 Macro 0.8 | F1 Macro 0.85 | F1 Macro 0.9 | F1 Macro 0.95 | Threshold 0 | Threshold 1 | Threshold 2 | Threshold 3 | Threshold 4 | Threshold 5 | Threshold 6 | Threshold 7 | Threshold 8 | Threshold 9 | Threshold 10 | Threshold 11 | Threshold 12 | Threshold 13 | Threshold 14 | Threshold 15 | Threshold 16 | Threshold 17 | Threshold 18 | 0      | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11     | 12     | 13     | 14     | 15     | 16     | 17     | 18     | Max F1 | Mean F1 |
|:-------------:|:-----:|:-----:|:---------------:|:------------:|:-------------:|:------------:|:-------------:|:------------:|:-------------:|:------------:|:-------------:|:------------:|:-------------:|:------------:|:-------------:|:------------:|:-------------:|:------------:|:-------------:|:------------:|:-------------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:------------:|:------------:|:------------:|:------------:|:------------:|:------------:|:------------:|:------------:|:------------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:-------:|
| 1.2949        | 1.0   | 5595  | 0.9920          | 0.0638       | 0.0742        | 0.0860       | 0.0994        | 0.1129       | 0.1278        | 0.1430       | 0.1589        | 0.1751       | 0.1903        | 0.2064       | 0.2235        | 0.2373       | 0.2479        | 0.2512       | 0.2275        | 0.1775       | 0.0876        | 0.75        | 0.8         | 0.75        | 0.85        | 0.65        | 0.8         | 0.75        | 0.85        | 0.8         | 0.7         | 0.9          | 0.75         | 0.8          | 0.8          | 0.85         | 0.8          | 0.85         | 0.9          | 0.85         | 0.0863 | 0.1572 | 0.2169 | 0.0959 | 0.2903 | 0.3523 | 0.3723 | 0.1624 | 0.2313 | 0.4610 | 0.3852 | 0.4756 | 0.1678 | 0.1154 | 0.2816 | 0.1848 | 0.3673 | 0.5307 | 0.1168 | 0.2512 | 0.2658  |
| 0.9147        | 2.0   | 11190 | 0.9023          | 0.0813       | 0.1044        | 0.1275       | 0.1498        | 0.1706       | 0.1898        | 0.2088       | 0.2261        | 0.2449       | 0.2624        | 0.2798       | 0.2951        | 0.3107       | 0.3233        | 0.3328       | 0.3348        | 0.3156       | 0.2286        | 0.75        | 0.8         | 0.85        | 0.9         | 0.75        | 0.85        | 0.8         | 0.85        | 0.8         | 0.8         | 0.9          | 0.85         | 0.9          | 0.65         | 0.9          | 0.9          | 0.85         | 0.9          | 0.95         | 0.1231 | 0.2517 | 0.3359 | 0.2514 | 0.4106 | 0.4565 | 0.4166 | 0.2556 | 0.3152 | 0.5241 | 0.5686 | 0.5085 | 0.2177 | 0.1176 | 0.3757 | 0.3059 | 0.4286 | 0.5881 | 0.2143 | 0.3348 | 0.3508  |
| 0.732         | 3.0   | 16785 | 0.8445          | 0.0895       | 0.1160        | 0.1402       | 0.1634        | 0.1847       | 0.2040        | 0.2229       | 0.2406        | 0.2583       | 0.2763        | 0.2924       | 0.3101        | 0.3251       | 0.3405        | 0.3547       | 0.3634        | 0.3572       | 0.2839        | 0.8         | 0.85        | 0.9         | 0.9         | 0.8         | 0.85        | 0.8         | 0.9         | 0.9         | 0.8         | 0.95         | 0.85         | 0.9          | 0.8          | 0.9          | 0.85         | 0.85         | 0.85         | 0.9          | 0.1543 | 0.2738 | 0.3791 | 0.2915 | 0.4439 | 0.4944 | 0.4463 | 0.3216 | 0.3402 | 0.5410 | 0.5665 | 0.5310 | 0.2331 | 0.1319 | 0.3899 | 0.3173 | 0.4432 | 0.6120 | 0.2342 | 0.3634 | 0.3761  |


### Framework versions

- Transformers 4.36.1
- Pytorch 2.1.0+cu121
- Datasets 2.13.1
- Tokenizers 0.15.0