leaderboard-pr-bot's picture
Adding Evaluation Results
b5dd5ed verified
|
raw
history blame
7.01 kB
metadata
language:
  - en
license: llama3
model-index:
  - name: Llama-3-Instruct-8B-SimPO-ExPO
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 64.34
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chujiezheng/Llama-3-Instruct-8B-SimPO-ExPO
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 25.87
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chujiezheng/Llama-3-Instruct-8B-SimPO-ExPO
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 0.53
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chujiezheng/Llama-3-Instruct-8B-SimPO-ExPO
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 4.92
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chujiezheng/Llama-3-Instruct-8B-SimPO-ExPO
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 9.5
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chujiezheng/Llama-3-Instruct-8B-SimPO-ExPO
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 26.68
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chujiezheng/Llama-3-Instruct-8B-SimPO-ExPO
          name: Open LLM Leaderboard

Llama-3-Instruct-8B-SimPO-ExPO

The extrapolated (ExPO) model based on princeton-nlp/Llama-3-Instruct-8B-SimPO and meta-llama/Meta-Llama-3-8B-Instruct, as in the "Weak-to-Strong Extrapolation Expedites Alignment" paper.

Specifically, we obtain this model by extrapolating (alpha = 0.3) from the weights of the SFT and DPO/RLHF checkpoints, achieving superior alignment with human preference.

This extrapolated model achieves the 40.6% win rate and 45.8% LC win rate on AlpacaEval 2.0, outperforming the original Llama-3-Instruct-8B-SimPO's 40.5% and 44.7%, respectively.

Evaluation Results

Evaluation results on the AlpacaEval 2.0 benchmark (you can find the evaluation outputs on the official GitHub repo):

Win Rate (Ori) LC Win Rate (Ori) Win Rate (+ ExPO) LC Win Rate (+ ExPO)
HuggingFaceH4/zephyr-7b-alpha 6.7% 10.0% 10.6% 13.6%
HuggingFaceH4/zephyr-7b-beta 10.2% 13.2% 11.1% 14.0%
berkeley-nest/Starling-LM-7B-alpha 15.0% 18.3% 18.2% 19.5%
Nexusflow/Starling-LM-7B-beta 26.6% 25.8% 29.6% 26.4%
snorkelai/Snorkel-Mistral-PairRM 24.7% 24.0% 28.8% 26.4%
RLHFlow/LLaMA3-iterative-DPO-final 29.2% 36.0% 32.7% 37.8%
internlm/internlm2-chat-1.8b 3.8% 4.0% 5.2% 4.3%
internlm/internlm2-chat-7b 20.5% 18.3% 28.1% 22.7%
internlm/internlm2-chat-20b 36.1% 24.9% 46.2% 27.2%
allenai/tulu-2-dpo-7b 8.5% 10.2% 11.5% 11.7%
allenai/tulu-2-dpo-13b 11.2% 15.5% 15.6% 17.6%
allenai/tulu-2-dpo-70b 15.4% 21.2% 23.0% 25.7%

Evaluation results on the MT-Bench benchmark (you can find the evaluation outputs on the official GitHub repo):

Original + ExPO
HuggingFaceH4/zephyr-7b-alpha 6.85 6.87
HuggingFaceH4/zephyr-7b-beta 7.02 7.06
berkeley-nest/Starling-LM-7B-alpha 7.82 7.91
Nexusflow/Starling-LM-7B-beta 8.10 8.18
snorkelai/Snorkel-Mistral-PairRM 7.63 7.69
RLHFlow/LLaMA3-iterative-DPO-final 8.08 8.45
internlm/internlm2-chat-1.8b 5.17 5.26
internlm/internlm2-chat-7b 7.72 7.80
internlm/internlm2-chat-20b 8.13 8.26
allenai/tulu-2-dpo-7b 6.35 6.38
allenai/tulu-2-dpo-13b 7.00 7.26
allenai/tulu-2-dpo-70b 7.79 8.03

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 21.97
IFEval (0-Shot) 64.34
BBH (3-Shot) 25.87
MATH Lvl 5 (4-Shot) 0.53
GPQA (0-shot) 4.92
MuSR (0-shot) 9.50
MMLU-PRO (5-shot) 26.68