|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- kde4 |
|
metrics: |
|
- rouge |
|
- sacrebleu |
|
model-index: |
|
- name: mt5_small_kde4_en_ko |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: kde4 |
|
type: kde4 |
|
config: en-ko |
|
split: train |
|
args: en-ko |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.0832 |
|
- name: Sacrebleu |
|
type: sacrebleu |
|
value: 3.3559 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5_small_kde4_en_ko |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the kde4 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.1644 |
|
- Rouge1: 0.0832 |
|
- Rouge2: 0.0195 |
|
- Rougel: 0.0826 |
|
- Sacrebleu: 3.3559 |
|
|
|
## Model description |
|
|
|
This model tries to achieve translation from English to Korean using google's mt5 multilingual model. |
|
|
|
## Intended uses & limitations |
|
|
|
Translation from English to Korean |
|
|
|
## Usage |
|
|
|
You can use this model directly with a pipeline for translation language modeling: |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
>>> translator = pipeline('translation', model='chunwoolee0/ke_t5_base_bongsoo_en_ko') |
|
|
|
>>> translator("Let us go for a walk after lunch.") |
|
[{'translation_text': '오류를 방문하십시오.'}] |
|
|
|
The translation fails completely. |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Sacrebleu | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 15.8735 | 0.46 | 500 | 6.5322 | 0.0101 | 0.0004 | 0.0102 | 0.464 | |
|
| 7.183 | 0.93 | 1000 | 4.2298 | 0.0203 | 0.0012 | 0.02 | 0.6102 | |
|
| 5.4447 | 1.39 | 1500 | 3.5600 | 0.0399 | 0.005 | 0.0396 | 1.5798 | |
|
| 4.8372 | 1.85 | 2000 | 3.3343 | 0.0537 | 0.0088 | 0.0533 | 3.0115 | |
|
| 4.5579 | 2.32 | 2500 | 3.2131 | 0.0732 | 0.016 | 0.0729 | 3.3743 | |
|
| 4.4532 | 2.78 | 3000 | 3.1644 | 0.0832 | 0.0195 | 0.0826 | 3.3559 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|