|
--- |
|
library_name: transformers |
|
license: cc-by-nc-4.0 |
|
language: |
|
- fr |
|
- wo |
|
|
|
datasets: |
|
- galsenai/french-wolof-translation |
|
metrics: |
|
- sacrebleu |
|
model-index: |
|
- name: your-model-name |
|
results: |
|
- task: |
|
name: Translation |
|
type: translation |
|
dataset: |
|
name: galsenai/french-wolof-translation |
|
type: galsenai/french-wolof-translation |
|
metrics: |
|
- name: sacrebleu |
|
type: sacrebleu |
|
value: 9.17 |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
## Model Description |
|
|
|
This model is a fine-tuned version of `facebook/nllb-200-distilled-600M` on the `galsenai/french-wolof-translation` dataset. It is designed to perform translation from French to Wolof. |
|
|
|
## Evaluation |
|
|
|
The model was evaluated on a subset of 50 lines from the test split of the galsenai/french-wolof-translation dataset. The evaluation metric used was BLEU score, computed using the sacrebleu library. |
|
|
|
## Evaluation Results |
|
|
|
BLEU score: 9.17 |
|
|
|
## How to Use |
|
|
|
```python |
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer |
|
|
|
model_name = "cibfaye/nllb-fr-wo" |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
def translate(text, src_lang='fra_Latn', tgt_lang='wol_Latn', a=32, b=3, max_input_length=1024, num_beams=5, **kwargs): |
|
tokenizer.src_lang = src_lang |
|
tokenizer.tgt_lang = tgt_lang |
|
inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=max_input_length) |
|
result = model.generate( |
|
**inputs.to(model.device), |
|
forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang), |
|
max_new_tokens=int(a + b * inputs.input_ids.shape[1]), |
|
num_beams=num_beams, |
|
**kwargs |
|
) |
|
return tokenizer.batch_decode(result, skip_special_tokens=True) |
|
|
|
text = "Votre texte en français ici." |
|
translation = translate(text) |
|
print(translation) |
|
|
|
|
|
|