metadata
language:
- wo
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper Small Wolof - Cibfaye
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Google Fleurs
type: google/fleurs
config: wo_sn
split: test
args: wo_sn
metrics:
- name: Wer
type: wer
value: 43.941262190337405
Whisper Small Wolof - Cibfaye
This model is a fine-tuned version of openai/whisper-small on the Google Fleurs dataset. It achieves the following results on the evaluation set:
- Loss: 1.1460
- Wer Ortho: 44.4168
- Wer: 43.9413
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 1000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
0.2261 | 3.2895 | 500 | 0.9998 | 45.8522 | 45.2079 |
0.0286 | 6.5789 | 1000 | 1.1460 | 44.4168 | 43.9413 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1