whisper-wolof / README.md
cibfaye's picture
End of training
aeb3194 verified
metadata
language:
  - wo
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Small Wolof - Cibfaye
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Google Fleurs
          type: google/fleurs
          config: wo_sn
          split: test
          args: wo_sn
        metrics:
          - name: Wer
            type: wer
            value: 43.941262190337405

Whisper Small Wolof - Cibfaye

This model is a fine-tuned version of openai/whisper-small on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1460
  • Wer Ortho: 44.4168
  • Wer: 43.9413

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.2261 3.2895 500 0.9998 45.8522 45.2079
0.0286 6.5789 1000 1.1460 44.4168 43.9413

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1