cifope's picture
Update README.md
3c89035 verified
|
raw
history blame
3.9 kB
---
license: mit
language:
- wo
- fr
metrics:
- bleu
pipeline_tag: translation
tags:
- text-generation-inference
---
# Model Documentation: Wolof to French Translation with NLLB-200
## Model Overview
This document describes a machine translation model fine-tuned from Meta's NLLB-200 for translating from Wolof to French. The model, hosted at `cifope/nllb-200-wo-fr-distilled-600M`, utilizes a distilled version of the NLLB-200 model which has been specifically optimized for translation tasks between the Wolof and French languages.
## Dependencies
The model requires the `transformers` library by Hugging Face. Ensure that you have the library installed:
```bash
pip install transformers
```
## Setup
Import necessary classes from the `transformers` library:
```python
from transformers import AutoModelForSeq2SeqLM, NllbTokenizer
```
Initialize the model and tokenizer:
```python
model = AutoModelForSeq2SeqLM.from_pretrained('cifope/nllb-200-wo-fr-distilled-600M')
tokenizer = NllbTokenizer.from_pretrained('facebook/nllb-200-distilled-600M')
```
## Tokenizer Customization
To integrate specific features like new language codes into the tokenizer, you can use the `fix_tokenizer` function:
```python
def fix_tokenizer(tokenizer, new_lang='wol_Wol'):
old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder)
tokenizer.lang_code_to_id[new_lang] = old_len-1
tokenizer.id_to_lang_code[old_len-1] = new_lang
tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset
tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()}
if new_lang not in tokenizer._additional_special_tokens:
tokenizer._additional_special_tokens.append(new_lang)
tokenizer.added_tokens_encoder = {}
tokenizer.added_tokens_decoder = {}
fix_tokenizer(tokenizer)
```
## Translation Functions
### Translate from French to Wolof
The `translate` function translates text from French to Wolof:
```python
def translate(text, src_lang='fra_Latn', tgt_lang='wol_Wol', a=16, b=1.5, max_input_length=1024, **kwargs):
tokenizer.src_lang = src_lang
tokenizer.tgt_lang = tgt_lang
inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=max_input_length)
result = model.generate(
**inputs.to(model.device),
forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang),
max_new_tokens=int(a + b * inputs.input_ids.shape[1]),
**kwargs
)
return tokenizer.batch_decode(result, skip_special_tokens=True)
```
### Translate from Wolof to French
The `reversed_translate` function translates text from Wolof to French:
```python
def reversed_translate(text, src_lang='wol_Wol', tgt_lang='fra_Latn', a=16, b=1.5, max_input_length=1024, **kwargs):
tokenizer.src_lang = src_lang
tokenizer.tgt_lang = tgt_lang
inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=max_input_length)
result = model.generate(
**inputs.to(model.device),
forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang),
max_new_tokens=int(a + b * inputs.input_ids.shape[1]),
**kwargs
)
return tokenizer.batch_decode(result, skip_special_tokens=True)
```
## Usage
To use the model for translating text, simply call the `translate` or `reversed_translate` function with the appropriate text and parameters. For example:
```python
french_text = "L'argent peut être échangé à la seule banque des îles située à Stanley"
wolof_translation = translate(french_text)
print(wolof_translation)
wolof_text = "alkaati yi tàmbali nañu xàll léegi kilifa gi ñów"
french_translation = reversed_translate(wolof_text)
print(french_translation)
```