metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: Whisper Tiny-Handy-Pretty - ckandemir
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-US
split: train[450:]
args: en-US
metrics:
- name: Wer
type: wer
value: 0.3116883116883117
Whisper Tiny-Handy-Pretty - ckandemir
This model is a fine-tuned version of openai/whisper-small on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:
- Loss: 0.5197
- Wer Ortho: 31.6471
- Wer: 0.3117
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- training_steps: 150
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
0.8427 | 1.32 | 50 | 0.5401 | 35.9655 | 0.3566 |
0.1982 | 2.63 | 100 | 0.5179 | 35.5336 | 0.3501 |
0.0531 | 3.95 | 150 | 0.5197 | 31.6471 | 0.3117 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3