Part of BEIR-PL: Zero Shot Information Retrieval Benchmark for the Polish Language.

Link to arxiv: https://arxiv.org/pdf/2305.19840.pdf

Contact: konrad.wojtasik@pwr.edu.pl

How to use:

With sentence transformers:

from sentence_transformers import CrossEncoder
model_path = "clarin-knext/herbert-base-reranker-msmarco"
model = CrossEncoder(model_path, max_length=512)
scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])

With transformers:

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model_path = "clarin-knext/herbert-base-reranker-msmarco"
model = AutoModelForSequenceClassification.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
features = tokenizer(['Jakie miasto jest stolica Polski?', 'Stolicą Polski jest Warszawa.'],  padding=True, truncation=True, return_tensors="pt")
model.eval()
with torch.no_grad():
    scores = model(**features).logits
    print(scores)
Downloads last month
49
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using clarin-knext/herbert-base-reranker-msmarco 1