bcms-bertic-frenk-hate
Text classification model based on classla/bcms-bertic
and fine-tuned on the FRANK dataset comprising of LGBT and migrant hatespeech. Only the Croatian subset of the data was used for fine-tuning and the dataset has been relabeled for binary classification (offensive or acceptable).
Fine-tuning hyperparameters
Fine-tuning was performed with simpletransformers
. Beforehand a brief hyperparameter optimisation was performed and the presumed optimal hyperparameters are:
model_args = {
"num_train_epochs": 12,
"learning_rate": 1e-5,
"train_batch_size": 74}
Performance
The same pipeline was run with two other models and with the same dataset. Accuracy and macro F1 score were recorded for each of the 6 fine-tuning sessions and post festum analyzed.
model | average accuracy | average macro F1 |
---|---|---|
bcms-bertic-frenk-hate | 0.8313 | 0.8219 |
EMBEDDIA/crosloengual-bert | 0.8054 | 0.796 |
xlm-roberta-base | 0.7175 | 0.7049 |
From recorded accuracies and macro F1 scores p-values were also calculated:
Comparison with crosloengual-bert
:
test | accuracy p-value | macro F1 p-value |
---|---|---|
Wilcoxon | 0.00781 | 0.00781 |
Mann Whithney | 0.00108 | 0.00108 |
Student t-test | 2.43e-10 | 1.27e-10 |
Comparison with xlm-roberta-base
:
test | accuracy p-value | macro F1 p-value |
---|---|---|
Wilcoxon | 0.00781 | 0.00781 |
Mann Whithney | 0.00107 | 0.00108 |
Student t-test | 4.83e-11 | 5.61e-11 |