xlm-r-bertic / README.md
5roop's picture
Update README.md
ab93741
|
raw
history blame
3.8 kB
metadata
license: cc-by-sa-4.0
language:
  - hr
  - bs
  - sr

XLM-R-BERTić

This model was produced by pre-training XLM-Roberta-large 48k steps on South Slavic languages.

Benchmarking

Three tasks were chosen for model evaluation:

  • Named Entity Recognition (NER)
  • Sentiment regression
  • COPA (Choice of plausible alternatives)

In all cases, this model was finetuned for specific downstream tasks.

NER

Mean F1 scores were used to evaluate performance.

system dataset F1 score
XLM-R-BERTić hr500k 0.927
BERTić hr500k 0.925
XLM-R-SloBERTić hr500k 0.923
XLM-Roberta-Large hr500k 0.919
crosloengual-bert hr500k 0.918
XLM-Roberta-Base hr500k 0.903

Sentiment regression

ParlaSent dataset was used to evaluate sentiment regression for Bosnian, Croatian, and Serbian languages. The procedure is explained in greater detail in the dedicated benchmarking repository.

system train test r^2
xlm-r-parlasent ParlaSent_BCS.jsonl ParlaSent_BCS_test.jsonl 0.615
BERTić ParlaSent_BCS.jsonl ParlaSent_BCS_test.jsonl 0.612
XLM-R-SloBERTić ParlaSent_BCS.jsonl ParlaSent_BCS_test.jsonl 0.607
XLM-Roberta-Large ParlaSent_BCS.jsonl ParlaSent_BCS_test.jsonl 0.605
XLM-R-BERTić ParlaSent_BCS.jsonl ParlaSent_BCS_test.jsonl 0.601
crosloengual-bert ParlaSent_BCS.jsonl ParlaSent_BCS_test.jsonl 0.537
XLM-Roberta-Base ParlaSent_BCS.jsonl ParlaSent_BCS_test.jsonl 0.500
dummy (mean) ParlaSent_BCS.jsonl ParlaSent_BCS_test.jsonl -0.12

COPA

system dataset Accuracy score
BERTić Copa-SR 0.689
XLM-R-SloBERTić Copa-SR 0.665
XLM-R-BERTić Copa-SR 0.637
crosloengual-bert Copa-SR 0.607
XLM-Roberta-Base Copa-SR 0.573
XLM-Roberta-Large Copa-SR 0.570

Citation

(to be added soon)

Authors