Edit model card

my_awesome_wnut_model

This model is a fine-tuned version of almanach/camembert-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0159
  • Precision: 0.0
  • Recall: 0.0
  • F1: 0.0
  • Accuracy: 0.9970

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 160 0.1652 0.0 0.0 0.0 0.9528
No log 2.0 320 0.0499 0.0 0.0 0.0 0.9943
No log 3.0 480 0.0303 0.0 0.0 0.0 0.9960
0.1412 4.0 640 0.0239 0.0 0.0 0.0 0.9967
0.1412 5.0 800 0.0206 0.0 0.0 0.0 0.9968
0.1412 6.0 960 0.0186 0.0 0.0 0.0 0.9969
0.0254 7.0 1120 0.0173 0.0 0.0 0.0 0.9970
0.0254 8.0 1280 0.0165 0.0 0.0 0.0 0.9970
0.0254 9.0 1440 0.0161 0.0 0.0 0.0 0.9970
0.0184 10.0 1600 0.0159 0.0 0.0 0.0 0.9970

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
29
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for clementdevarieux/my_awesome_wnut_model

Finetuned
(94)
this model