File size: 1,595 Bytes
6830f5c e04d975 6830f5c e04d975 75ff05d e04d975 75ff05d e04d975 6830f5c e04d975 6830f5c 34aa254 c5278fa 34aa254 e04d975 6830f5c e04d975 34aa254 e04d975 6830f5c f0e0ae9 bbb6212 f0e0ae9 75ff05d f0e0ae9 014b9aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Direct Use
```python
from transformers.models.detr import DetrForSegmentation
img_proc = AutoImageProcessor.from_pretrained(
"ArkeaIAF/detr-base-layout-detection"
)
model = DetrForSegmentation.from_pretrained(
"ArkeaIAF/detr-base-layout-detection"
)
with torch.inference_mode():
input_ids = img_proc(img, return_tensors='pt')
output = model(**input_ids)
threshold=0.4
segmentation_mask = img_proc.post_process_segmentation(
out_seg,
threshold=threshold,
target_sizes=[img.size[::-1]]
)
bbox_pred = img_proc.post_process_object_detection(
output,
threshold=threshold,
target_sizes=[img.size[::-1]]
)
```
### Citation
```
@online{DeDetrLay,
AUTHOR = {Cyrile Delestre},
URL = {https://huggingface.co/cmarkea/detr-base-layout-detection},
YEAR = {2024},
KEYWORDS = {Image Processing ; Transformers ; Layout},
}
``` |