Cyrile's picture
Update README.md
21167ca
|
raw
history blame
6.87 kB
metadata
language: fr
license: mit
datasets:
  - Jean-Baptiste/wikiner_fr
widget:
  - text: >-
      Boulanger, habitant à Boulanger et travaillant dans le magasin Boulanger
      situé dans la ville de Boulanger. Boulanger a écrit le livre éponyme
      Boulanger édité par la maison d'édition Boulanger.
  - text: >-
      Quentin Jerome Tarantino naît le 27 mars 1963 à Knoxville, dans le
      Tennessee. Il est le fils de Connie McHugh, une infirmière, née le 3
      septembre 1946, et de Tony Tarantino, acteur et musicien amateur né à New
      York. Ce dernier est d'origine italienne par son père ; sa mère a des
      ascendances irlandaises et cherokees. Il est prénommé d'après Quint Asper,
      le personnage joué par Burt Reynolds dans la série Gunsmoke et Quentin
      Compson, personnage du roman Le Bruit et la Fureur. Son père quitte le
      domicile familial avant même sa naissance. En 1965, sa mère déménage à
      Torrance, dans la banlieue sud de Los Angeles, et se remarie avec Curtis
      Zastoupil, un pianiste de bar, qui lui fait découvrir le cinéma. Le couple
      divorce alors que le jeune Quentin a une dizaine d'années.

DistilCamemBERT-NER

We present DistilCamemBERT-NER which is DistilCamemBERT fine tuned for the NER (Named Entity Recognition) task for the French language. The work is inspired by Jean-Baptiste/camembert-ner based on the CamemBERT model. The problem of the modelizations based on CamemBERT is at the scaling moment, for the production phase for example. Indeed, inference cost can be a technological issue. To counteract this effect, we propose this modelization which divides the inference time by 2 with the same consumption power thanks to DistilCamemBERT.

Dataset

The dataset used is wikiner_fr which represents ~170k sentences labelized in 5 categories : * PER: personality ; * LOC: location ; * ORG: organization ; * MISC: miscellaneous entities (movies title, books, etc.) ; * O: background (Outside entity). Evaluation results

class precision (%) recall (%) f1 (%) support (#sub-word)
global 98.17 98.19 98.18 378,776
PER 96.78 96.87 96.82 23,754
LOC 94.05 93.59 93.82 27,196
ORG 86.05 85.92 85.98 6,526
MISC 88.78 84.69 86.69 11,891
O 99.26 99.47 99.37 309,409

Benchmark

This model performance is compared to 2 reference models (see below) with the metric f1 score. For the mean inference time measure, an AMD Ryzen 5 4500U @ 2.3GHz with 6 cores was used:

| model | time (ms) | PER (%) | LOC (%) | ORG (%) | MISC (%) | O (%) | | :---------------------------------------------------------------------------------------------------------------: | :----------------: | :--------------: | :--------------: | :--------------: | :--------------: | :------------- : | | cmarkea/distilcamembert-base-ner | 43.44 | 96.82 | 93.82 | 85.98 | 86.69 | 99.37 | | Davlan/bert-base-multilingual-cased-ner-hrl | 87.56 | 79.93 | 72.89 | 61.34 | n/a | 96.04 | | flair/ner-french | 314.96 | 82.91 | 76.17 | 70.96 | 76.29 | 97.65 |

How to use DistilCamemBERT-NER

from transformers import pipeline

ner = pipeline(
    task='ner',
    model="cmarkea/distilcamembert-base-ner",
    tokenizer="cmarkea/distilcamembert-base-ner",
    aggregation_strategy="simple"
)
result = ner(
    "Le Crédit Mutuel Arkéa est une banque Française, elle comprend le CMB "
    "qui est une banque située en Bretagne et le CMSO qui est une banque "
    "qui se situe principalement en Aquitaine. C'est sous la présidence de "
    "Louis Lichou, dans les années 1980 que différentes filiales sont créées "
    "au sein du CMB et forment les principales filiales du groupe qui "
    "existent encore aujourd'hui (Federal Finance, Suravenir, Financo, etc.)."
)

result
[{'entity_group': 'ORG',
  'score': 0.9974479,
  'word': 'Crédit Mutuel Arkéa',
  'start': 3,
  'end': 22},
 {'entity_group': 'LOC',
  'score': 0.9000358,
  'word': 'Française',
  'start': 38,
  'end': 47},
 {'entity_group': 'ORG',
  'score': 0.9788757,
  'word': 'CMB',
  'start': 66,
  'end': 69},
 {'entity_group': 'LOC',
  'score': 0.99919766,
  'word': 'Bretagne',
  'start': 99,
  'end': 107},
 {'entity_group': 'ORG',
  'score': 0.9594884,
  'word': 'CMSO',
  'start': 114,
  'end': 118},
 {'entity_group': 'LOC',
  'score': 0.99935514,
  'word': 'Aquitaine',
  'start': 169,
  'end': 178},
 {'entity_group': 'PER',
  'score': 0.99911094,
  'word': 'Louis Lichou',
  'start': 208,
  'end': 220},
 {'entity_group': 'ORG',
  'score': 0.96226394,
  'word': 'CMB',
  'start': 291,
  'end': 294},
 {'entity_group': 'ORG',
  'score': 0.9983959,
  'word': 'Federal Finance',
  'start': 374,
  'end': 389},
 {'entity_group': 'ORG',
  'score': 0.9984454,
  'word': 'Suravenir',
  'start': 391,
  'end': 400},
 {'entity_group': 'ORG',
  'score': 0.9985084,
  'word': 'Financo',
  'start': 402,
  'end': 409}]

Citation

@inproceedings{delestre:hal-03674695,
  TITLE = {{DistilCamemBERT : une distillation du mod{\`e}le fran{\c c}ais CamemBERT}},
  AUTHOR = {Delestre, Cyrile and Amar, Abibatou},
  URL = {https://hal.archives-ouvertes.fr/hal-03674695},
  BOOKTITLE = {{CAp (Conf{\'e}rence sur l'Apprentissage automatique)}},
  ADDRESS = {Vannes, France},
  YEAR = {2022},
  MONTH = Jul,
  KEYWORDS = {NLP ; Transformers ; CamemBERT ; Distillation},
  PDF = {https://hal.archives-ouvertes.fr/hal-03674695/file/cap2022.pdf},
  HAL_ID = {hal-03674695},
  HAL_VERSION = {v1},
}