biolinkbert-mednli
This model is a fine-tuned version of michiyasunaga/BioLinkBERT-large on MedNLI. It achieves the following results on the evaluation set:
{
"eval_accuracy": 0.8788530230522156,
"eval_loss": 0.7843484878540039,
"eval_runtime": 39.7009,
"eval_samples": 1395,
"eval_samples_per_second": 35.138,
"eval_steps_per_second": 1.108
}
The accuracy for the test set is
{
"eval_accuracy": 0.8607594966888428,
"eval_loss": 0.879707932472229,
"eval_runtime": 27.4404,
"eval_samples": 1395,
"eval_samples_per_second": 51.821,
"eval_steps_per_second": 1.64
}
The labels are
"id2label": {
"0": "entailment",
"1": "neutral",
"2": "contradiction"
},
Training procedure
This model checkpoint is made by mednli.py by the following command:
root=/path/to/mednli/;
python mednli.py \
--model_name_or_path michiyasunaga/BioLinkBERT-large \
--do_train --train_file ${root}/mli_train_v1.jsonl \
--do_eval --validation_file ${root}/mli_dev_v1.jsonl \
--do_predict --test_file ${root}/mli_test_v1.jsonl \
--max_seq_length 512 --fp16 --per_device_train_batch_size 16 --gradient_accumulation_steps 2 \
--learning_rate 3e-5 --warmup_ratio 0.5 --num_train_epochs 10 \
--output_dir ./biolinkbert_mednli
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.5
- num_epochs: 10.0
- mixed_precision_training: Native AMP
Framework versions
- Transformers 4.22.2
- Pytorch 1.13.0+cu117
- Datasets 2.4.0
- Tokenizers 0.12.1
- Downloads last month
- 17
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.