Model Trained Using AutoTrain

  • Problem type: Tabular regression

Validation Metrics

  • r2: 0.9984848248937886
  • mse: 2414.5671496869554
  • mae: 25.17867390839041
  • rmse: 49.13824528498098
  • rmsle: 0.026803719250247764
  • loss: 49.13824528498098

Best Params

  • learning_rate: 0.021447034999088264
  • reg_lambda: 1.8519959907940258e-07
  • reg_alpha: 0.4126490352165311
  • subsample: 0.2980305940030723
  • colsample_bytree: 0.9624113264792772
  • max_depth: 6
  • early_stopping_rounds: 213
  • n_estimators: 15000
  • eval_metric: rmse

Usage

import json
import joblib
import pandas as pd

model = joblib.load('model.joblib')
config = json.load(open('config.json'))

features = config['features']

# data = pd.read_csv("data.csv")
data = data[features]

predictions = model.predict(data)  # or model.predict_proba(data)

# predictions can be converted to original labels using label_encoders.pkl
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Space using coan/botClaiton 1

Collection including coan/botClaiton