CodeFuse-13B / README.md
codefuse-admin's picture
update readme.md to add links to github repos
6565431
|
raw
history blame
5.21 kB
metadata
license: other
tasks:
  - code-generation

Model Card for CodeFuse-13B

logo

[中文] [English]

Model Description

CodeFuse-13B is a 13 billion parameter code generation model trained on the GPT-NeoX framework, capable of handling code sequences of up to 4096 characters. This model was pretrained on a dataset consisting of 1000B token code, Chinese, and English data, covering over 40 programming languages. To further enhance the effectiveness and quality of the generated code, the model was fine-tuned on the CodeFuse-Evol-instruction-66k dataset, enabling it to produce more accurate, efficient, and compliant code. Pass@1 achieved 37.1% on the HumanEval evaluation set(BeamSearch strategy, BeamSize=3).

Code Community

Homepage: 🏡 https://github.com/codefuse-ai (Please give us your support with a Star🌟 + Fork🚀 + Watch👀)

  • If you wish to fine-tune the model yourself, you can visit ✨MFTCoder✨✨

  • If you wish to deploy the model yourself, you can visit ✨FasterTransformer4CodeFuse✨✨

  • If you wish to see a demo of the model, you can visit ✨CodeFuse Demo✨✨

Requirements

  • Python 3.8 or above.
  • PyTorch 1.12 or above, with a recommendation for 2.0 or above.
  • Transformers 4.24.0 or above.
  • It is advisable to use CUDA 11.4 or above (for GPU users and flash-attention users, this option should be considered).

Quickstart

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(("CodeFuse-13B"))
model = AutoModelForCausalLM.from_pretrained(("CodeFuse-13B"), device_map="auto").half().eval()

input_ids = tokenizer.encode("# language: Python\ndef quick_sort(array):\n", return_tensors="pt").to("cuda")
output_ids = model.generate(input_ids, max_new_tokens=200)

print(tokenizer.decode(output_ids[0]))

MD5

We notice that the file may be corrupted during transfer process. Please check MD5 value before use.

Model File MD5 Value
pytorch_model-00001-of-00006.bin b79e4ccc93c40fa6113aaf6a434473d5
pytorch_model-00002-of-00006.bin 5a82f19e3f62c693e41fe627084c722b
pytorch_model-00003-of-00006.bin d4b53c391a353d0fc0a1be1c913d5f04
pytorch_model-00004-of-00006.bin f9e3dcdea13ff02f4e3aad4f9db7a33f
pytorch_model-00005-of-00006.bin 698a8f2f05723a572193733bce12eb93
pytorch_model-00006-of-00006.bin 312439d0b810f1bb81034fe094ff84c7

简介

CodeFuse-13B是基于GPT-NeoX框架训练的13B参数代码生成模型,能够处理4096个字符的代码序列。该模型在1000B Token的代码、中文、英文数据数据集上进行预训练,覆盖超过40种编程语言。为了进一步提升生成代码的效果和质量,该模型还在CodeFuse-Evol-instruction-66k数据集上进行了微调,使得该模型能够生成更加准确、高效、符合要求的代码。在HumanEval评测集上Pass@1达到37.1%(采用BeamSearch解码,其中BeamSize=3)。

代码社区

大本营: 🏡 https://github.com/codefuse-ai欢迎为我们的项目一键三连 Star🌟 + Fork🚀 + Watch👀

要求

  • python 3.8及以上版本
  • pytorch 1.12及以上版本,推荐2.0及以上版本
  • transformers 4.24.0及以上版本
  • 建议使用CUDA 11.4及以上(GPU用户、flash-attention用户等需考虑此选项)。

快速使用

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(("CodeFuse-13B"))
model = AutoModelForCausalLM.from_pretrained(("CodeFuse-13B"), device_map="auto").half().eval()

input_ids = tokenizer.encode("# language: Python\ndef quick_sort(array):\n", return_tensors="pt").to("cuda")
output_ids = model.generate(input_ids, max_new_tokens=200)

print(tokenizer.decode(output_ids[0]))

MD5

我们发现模型文件可能会在传输过程中损坏,使用前请检查文件MD5值。

模型文件 MD5值
pytorch_model-00001-of-00006.bin b79e4ccc93c40fa6113aaf6a434473d5
pytorch_model-00002-of-00006.bin 5a82f19e3f62c693e41fe627084c722b
pytorch_model-00003-of-00006.bin d4b53c391a353d0fc0a1be1c913d5f04
pytorch_model-00004-of-00006.bin f9e3dcdea13ff02f4e3aad4f9db7a33f
pytorch_model-00005-of-00006.bin 698a8f2f05723a572193733bce12eb93
pytorch_model-00006-of-00006.bin 312439d0b810f1bb81034fe094ff84c7