license: other
tasks:
- code-generation
Model Card for CodeFuse-13B
Model Description
CodeFuse-13B is a 13 billion parameter code generation model trained on the GPT-NeoX framework, capable of handling code sequences of up to 4096 characters. This model was pretrained on a dataset consisting of 1000B token code, Chinese, and English data, covering over 40 programming languages. To further enhance the effectiveness and quality of the generated code, the model was fine-tuned on the CodeFuse-Evol-instruction-66k dataset, enabling it to produce more accurate, efficient, and compliant code. Pass@1 achieved 37.1% on the HumanEval evaluation set(BeamSearch strategy, BeamSize=3).
Code Community
Homepage: 🏡 https://github.com/codefuse-ai (Please give us your support with a Star🌟 + Fork🚀 + Watch👀)
If you wish to fine-tune the model yourself, you can visit ✨MFTCoder✨✨
If you wish to deploy the model yourself, you can visit ✨FasterTransformer4CodeFuse✨✨
If you wish to see a demo of the model, you can visit ✨CodeFuse Demo✨✨
Requirements
- Python 3.8 or above.
- PyTorch 1.12 or above, with a recommendation for 2.0 or above.
- Transformers 4.24.0 or above.
- It is advisable to use CUDA 11.4 or above (for GPU users and flash-attention users, this option should be considered).
Quickstart
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(("CodeFuse-13B"))
model = AutoModelForCausalLM.from_pretrained(("CodeFuse-13B"), device_map="auto").half().eval()
input_ids = tokenizer.encode("# language: Python\ndef quick_sort(array):\n", return_tensors="pt").to("cuda")
output_ids = model.generate(input_ids, max_new_tokens=200)
print(tokenizer.decode(output_ids[0]))
MD5
We notice that the file may be corrupted during transfer process. Please check MD5 value before use.
Model File | MD5 Value |
---|---|
pytorch_model-00001-of-00006.bin | b79e4ccc93c40fa6113aaf6a434473d5 |
pytorch_model-00002-of-00006.bin | 5a82f19e3f62c693e41fe627084c722b |
pytorch_model-00003-of-00006.bin | d4b53c391a353d0fc0a1be1c913d5f04 |
pytorch_model-00004-of-00006.bin | f9e3dcdea13ff02f4e3aad4f9db7a33f |
pytorch_model-00005-of-00006.bin | 698a8f2f05723a572193733bce12eb93 |
pytorch_model-00006-of-00006.bin | 312439d0b810f1bb81034fe094ff84c7 |
简介
CodeFuse-13B是基于GPT-NeoX框架训练的13B参数代码生成模型,能够处理4096个字符的代码序列。该模型在1000B Token的代码、中文、英文数据数据集上进行预训练,覆盖超过40种编程语言。为了进一步提升生成代码的效果和质量,该模型还在CodeFuse-Evol-instruction-66k数据集上进行了微调,使得该模型能够生成更加准确、高效、符合要求的代码。在HumanEval评测集上Pass@1达到37.1%(采用BeamSearch解码,其中BeamSize=3)。
代码社区
大本营: 🏡 https://github.com/codefuse-ai (欢迎为我们的项目一键三连 Star🌟 + Fork🚀 + Watch👀)
如果您想自己微调该模型,可以访问 ✨MFTCoder✨✨
如果您想自己部署该模型,可以访问 ✨FasterTransformer4CodeFuse✨✨
如果您想观看该模型示例,可以访问 ✨CodeFuse Demo✨✨
要求
- python 3.8及以上版本
- pytorch 1.12及以上版本,推荐2.0及以上版本
- transformers 4.24.0及以上版本
- 建议使用CUDA 11.4及以上(GPU用户、flash-attention用户等需考虑此选项)。
快速使用
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(("CodeFuse-13B"))
model = AutoModelForCausalLM.from_pretrained(("CodeFuse-13B"), device_map="auto").half().eval()
input_ids = tokenizer.encode("# language: Python\ndef quick_sort(array):\n", return_tensors="pt").to("cuda")
output_ids = model.generate(input_ids, max_new_tokens=200)
print(tokenizer.decode(output_ids[0]))
MD5
我们发现模型文件可能会在传输过程中损坏,使用前请检查文件MD5值。
模型文件 | MD5值 |
---|---|
pytorch_model-00001-of-00006.bin | b79e4ccc93c40fa6113aaf6a434473d5 |
pytorch_model-00002-of-00006.bin | 5a82f19e3f62c693e41fe627084c722b |
pytorch_model-00003-of-00006.bin | d4b53c391a353d0fc0a1be1c913d5f04 |
pytorch_model-00004-of-00006.bin | f9e3dcdea13ff02f4e3aad4f9db7a33f |
pytorch_model-00005-of-00006.bin | 698a8f2f05723a572193733bce12eb93 |
pytorch_model-00006-of-00006.bin | 312439d0b810f1bb81034fe094ff84c7 |