s23dr_tum / feature_solution.py
colin1842's picture
Upload 2 files
b7c799c verified
# Description: This file contains the handcrafted solution for the task of wireframe reconstruction
import io
from PIL import Image as PImage
import numpy as np
from collections import defaultdict
import cv2
import open3d as o3d
from typing import Tuple, List
from scipy.spatial.distance import cdist
from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
from hoho.color_mappings import gestalt_color_mapping, ade20k_color_mapping
import matplotlib.pyplot as plt
from kornia.feature import LoFTR
import kornia as K
import kornia.feature as KF
import torch
import copy
import matplotlib
import matplotlib.colors as mcolors
import matplotlib.pyplot as plt
import numpy as np
def plot_images(imgs, titles=None, cmaps="gray", dpi=100, size=6, pad=0.5):
"""Plot a set of images horizontally.
Args:
imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W).
titles: a list of strings, as titles for each image.
cmaps: colormaps for monochrome images.
"""
n = len(imgs)
if not isinstance(cmaps, (list, tuple)):
cmaps = [cmaps] * n
figsize = (size * n, size * 3 / 4) if size is not None else None
fig, ax = plt.subplots(1, n, figsize=figsize, dpi=dpi)
if n == 1:
ax = [ax]
for i in range(n):
ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i]))
ax[i].get_yaxis().set_ticks([])
ax[i].get_xaxis().set_ticks([])
ax[i].set_axis_off()
for spine in ax[i].spines.values(): # remove frame
spine.set_visible(False)
if titles:
ax[i].set_title(titles[i])
fig.tight_layout(pad=pad)
def plot_lines(lines, line_colors="orange", point_colors="cyan", ps=4, lw=2, indices=(0, 1)):
"""Plot lines and endpoints for existing images.
Args:
lines: list of ndarrays of size (N, 2, 2).
colors: string, or list of list of tuples (one for each keypoints).
ps: size of the keypoints as float pixels.
lw: line width as float pixels.
indices: indices of the images to draw the matches on.
"""
if not isinstance(line_colors, list):
line_colors = [line_colors] * len(lines)
if not isinstance(point_colors, list):
point_colors = [point_colors] * len(lines)
fig = plt.gcf()
ax = fig.axes
assert len(ax) > max(indices)
axes = [ax[i] for i in indices]
fig.canvas.draw()
# Plot the lines and junctions
for a, l, lc, pc in zip(axes, lines, line_colors, point_colors):
for i in range(len(l)):
line = matplotlib.lines.Line2D(
(l[i, 1, 1], l[i, 0, 1]),
(l[i, 1, 0], l[i, 0, 0]),
zorder=1,
c=lc,
linewidth=lw,
)
a.add_line(line)
pts = l.reshape(-1, 2)
a.scatter(pts[:, 1], pts[:, 0], c=pc, s=ps, linewidths=0, zorder=2)
def plot_color_line_matches(lines, lw=2, indices=(0, 1)):
"""Plot line matches for existing images with multiple colors.
Args:
lines: list of ndarrays of size (N, 2, 2).
lw: line width as float pixels.
indices: indices of the images to draw the matches on.
"""
n_lines = len(lines[0])
cmap = plt.get_cmap("nipy_spectral", lut=n_lines)
colors = np.array([mcolors.rgb2hex(cmap(i)) for i in range(cmap.N)])
np.random.shuffle(colors)
fig = plt.gcf()
ax = fig.axes
assert len(ax) > max(indices)
axes = [ax[i] for i in indices]
fig.canvas.draw()
# Plot the lines
for a, l in zip(axes, lines):
for i in range(len(l)):
line = matplotlib.lines.Line2D(
(l[i, 1, 1], l[i, 0, 1]),
(l[i, 1, 0], l[i, 0, 0]),
zorder=1,
c=colors[i],
linewidth=lw,
)
a.add_line(line)
def empty_solution():
'''Return a minimal valid solution, i.e. 2 vertices and 1 edge.'''
return np.zeros((2,3)), [(0, 1)]
def convert_entry_to_human_readable(entry):
out = {}
already_good = ['__key__', 'wf_vertices', 'wf_edges', 'edge_semantics', 'mesh_vertices', 'mesh_faces', 'face_semantics', 'K', 'R', 't']
for k, v in entry.items():
if k in already_good:
out[k] = v
continue
if k == 'points3d':
out[k] = read_points3D_binary(fid=io.BytesIO(v))
if k == 'cameras':
out[k] = read_cameras_binary(fid=io.BytesIO(v))
if k == 'images':
out[k] = read_images_binary(fid=io.BytesIO(v))
if k in ['ade20k', 'gestalt']:
out[k] = [PImage.open(io.BytesIO(x)).convert('RGB') for x in v]
if k == 'depthcm':
out[k] = [PImage.open(io.BytesIO(x)) for x in entry['depthcm']]
return out
def get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th = 50.0):
'''Get the vertices and edges from the gestalt segmentation mask of the house'''
vertices = []
connections = []
# Apex
apex_color = np.array(gestalt_color_mapping['apex'])
apex_mask = cv2.inRange(gest_seg_np, apex_color-0.5, apex_color+0.5)
if apex_mask.sum() > 0:
output = cv2.connectedComponentsWithStats(apex_mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
for i in range(numLabels-1):
vert = {"xy": centroids[i], "type": "apex"}
vertices.append(vert)
eave_end_color = np.array(gestalt_color_mapping['eave_end_point'])
eave_end_mask = cv2.inRange(gest_seg_np, eave_end_color-0.5, eave_end_color+0.5)
if eave_end_mask.sum() > 0:
output = cv2.connectedComponentsWithStats(eave_end_mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
for i in range(numLabels-1):
vert = {"xy": centroids[i], "type": "eave_end_point"}
vertices.append(vert)
# Connectivity
apex_pts = []
apex_pts_idxs = []
for j, v in enumerate(vertices):
apex_pts.append(v['xy'])
apex_pts_idxs.append(j)
apex_pts = np.array(apex_pts)
# Ridge connects two apex points
for edge_class in ['eave', 'ridge', 'rake', 'valley']:
edge_color = np.array(gestalt_color_mapping[edge_class])
mask = cv2.morphologyEx(cv2.inRange(gest_seg_np,
edge_color-0.5,
edge_color+0.5),
cv2.MORPH_DILATE, np.ones((11, 11)))
line_img = np.copy(gest_seg_np) * 0
if mask.sum() > 0:
output = cv2.connectedComponentsWithStats(mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
edges = []
for i in range(1, numLabels):
y,x = np.where(labels == i)
xleft_idx = np.argmin(x)
x_left = x[xleft_idx]
y_left = y[xleft_idx]
xright_idx = np.argmax(x)
x_right = x[xright_idx]
y_right = y[xright_idx]
edges.append((x_left, y_left, x_right, y_right))
cv2.line(line_img, (x_left, y_left), (x_right, y_right), (255, 255, 255), 2)
edges = np.array(edges)
if (len(apex_pts) < 2) or len(edges) <1:
continue
pts_to_edges_dist = np.minimum(cdist(apex_pts, edges[:,:2]), cdist(apex_pts, edges[:,2:]))
connectivity_mask = pts_to_edges_dist <= edge_th
edge_connects = connectivity_mask.sum(axis=0)
for edge_idx, edgesum in enumerate(edge_connects):
if edgesum>=2:
connected_verts = np.where(connectivity_mask[:,edge_idx])[0]
for a_i, a in enumerate(connected_verts):
for b in connected_verts[a_i+1:]:
connections.append((a, b))
return vertices, connections
def get_uv_depth(vertices, depth):
'''Get the depth of the vertices from the depth image'''
uv = []
for v in vertices:
uv.append(v['xy'])
uv = np.array(uv)
uv_int = uv.astype(np.int32)
H, W = depth.shape[:2]
uv_int[:, 0] = np.clip( uv_int[:, 0], 0, W-1)
uv_int[:, 1] = np.clip( uv_int[:, 1], 0, H-1)
vertex_depth = depth[(uv_int[:, 1] , uv_int[:, 0])]
return uv, vertex_depth
from scipy.spatial import distance_matrix
def non_maximum_suppression(points, threshold):
if len(points) == 0:
return []
# Create a distance matrix
dist_matrix = distance_matrix(points, points)
filtered_indices = []
# Suppress points within the threshold
keep = np.ones(len(points), dtype=bool)
for i in range(len(points)):
if keep[i]:
# Suppress points that are close to the current point
keep = np.logical_and(keep, dist_matrix[i] > threshold)
keep[i] = True # Keep the current point itself
filtered_indices.append(i)
return points[keep], filtered_indices
def merge_vertices_3d_ours(vert_edge_per_image, th=0.1):
'''Merge vertices that are close to each other in 3D space and are of same types'''
all_3d_vertices = []
connections_3d = []
all_indexes = []
cur_start = 0
types = []
for cimg_idx, (connections, vertices_3d) in vert_edge_per_image.items():
cur_start+=len(vertices_3d)
all_3d_vertices.append(vertices_3d)
connections+=[(x+cur_start,y+cur_start) for (x,y) in connections]
connections_3d.append(connections)
all_3d_vertices = np.concatenate(all_3d_vertices, axis=0)
new_vertices, _ = non_maximum_suppression(all_3d_vertices, 75)
new_connections = []
return new_vertices, connections_3d
def merge_vertices_3d(vert_edge_per_image, th=0.1):
'''Merge vertices that are close to each other in 3D space and are of same types'''
all_3d_vertices = []
connections_3d = []
all_indexes = []
cur_start = 0
types = []
for cimg_idx, (vertices, connections, vertices_3d) in vert_edge_per_image.items():
types += [int(v['type']=='apex') for v in vertices]
all_3d_vertices.append(vertices_3d)
connections_3d+=[(x+cur_start,y+cur_start) for (x,y) in connections]
cur_start+=len(vertices_3d)
all_3d_vertices = np.concatenate(all_3d_vertices, axis=0)
#print (connections_3d)
distmat = cdist(all_3d_vertices, all_3d_vertices)
types = np.array(types).reshape(-1,1)
same_types = cdist(types, types)
mask_to_merge = (distmat <= th) & (same_types==0)
new_vertices = []
new_connections = []
to_merge = sorted(list(set([tuple(a.nonzero()[0].tolist()) for a in mask_to_merge])))
to_merge_final = defaultdict(list)
for i in range(len(all_3d_vertices)):
for j in to_merge:
if i in j:
to_merge_final[i]+=j
for k, v in to_merge_final.items():
to_merge_final[k] = list(set(v))
already_there = set()
merged = []
for k, v in to_merge_final.items():
if k in already_there:
continue
merged.append(v)
for vv in v:
already_there.add(vv)
old_idx_to_new = {}
count=0
for idxs in merged:
new_vertices.append(all_3d_vertices[idxs].mean(axis=0))
for idx in idxs:
old_idx_to_new[idx] = count
count +=1
#print (connections_3d)
new_vertices=np.array(new_vertices)
#print (connections_3d)
for conn in connections_3d:
new_con = sorted((old_idx_to_new[conn[0]], old_idx_to_new[conn[1]]))
if new_con[0] == new_con[1]:
continue
if new_con not in new_connections:
new_connections.append(new_con)
#print (f'{len(new_vertices)} left after merging {len(all_3d_vertices)} with {th=}')
return new_vertices, new_connections
def prune_not_connected(all_3d_vertices, connections_3d):
'''Prune vertices that are not connected to any other vertex'''
connected = defaultdict(list)
for c in connections_3d:
connected[c[0]].append(c)
connected[c[1]].append(c)
new_indexes = {}
new_verts = []
connected_out = []
for k,v in connected.items():
vert = all_3d_vertices[k]
if tuple(vert) not in new_verts:
new_verts.append(tuple(vert))
new_indexes[k]=len(new_verts) -1
for k,v in connected.items():
for vv in v:
connected_out.append((new_indexes[vv[0]],new_indexes[vv[1]]))
connected_out=list(set(connected_out))
return np.array(new_verts), connected_out
def loftr_matcher(gestalt_img_0, gestalt_img1, depth_images):
import torchvision.transforms as transforms
rgb_to_gray = transforms.Compose([
transforms.ToPILImage(), # Convert tensor to PIL image
transforms.Grayscale(num_output_channels=1), # Convert to grayscale
transforms.ToTensor() # Convert back to tensor
])
device = 'cpu'#torch.device('cuda' if torch.cuda.is_available() else 'cpu')
w, h = depth_images.size
gest_seg_0 = gestalt_img_0.resize(depth_images.size)
gest_seg_0 = gest_seg_0.convert('L')
gest_seg_0_np = np.array(gest_seg_0)
gest_seg_0_tensor = K.image_to_tensor(gest_seg_0_np, False).float().to(device)
img1 = K.geometry.resize(gest_seg_0_tensor, (int(h/4), int(w/4))) / 255
gest_seg_1 = gestalt_img1.resize(depth_images.size)
gest_seg_1 = gest_seg_1.convert('L')
gest_seg_1_np = np.array(gest_seg_1)
gest_seg_1_tensor = K.image_to_tensor(gest_seg_1_np, False).float().to(device)
img2 = K.geometry.resize(gest_seg_1_tensor, (int(h/4), int(w/4))) / 255
matcher = KF.LoFTR(pretrained="outdoor").to(device)
input_dict = {
"image0": img1,
"image1": img2,
}
# print("Input dict shape", input_dict["image0"].shape, input_dict["image1"].shape)
with torch.no_grad():
correspondences = matcher(input_dict)
# mkpts0 = correspondences["keypoints0"].cpu().numpy()
# mkpts1 = correspondences["keypoints1"].cpu().numpy()
# Fm, inliers = cv2.findFundamentalMat(mkpts0, mkpts1, cv2.USAC_MAGSAC, 0.99, 0.3, 100000)
# inliers = inliers > 0
# inliers_flat = inliers.flatten()
mkpts0 = correspondences["keypoints0"].cpu().numpy() * 4
mkpts1 = correspondences["keypoints1"].cpu().numpy() * 4
# filter out keypoints that are in [0 - W, 0.4H - H] w=1920, h=1080
heigt_th = int(0.6 * h)
filter_indices = mkpts0[:, 1] < heigt_th
mkpts0 = mkpts0[filter_indices]
mkpts1 = mkpts1[filter_indices]
return correspondences, mkpts0, mkpts1
def disk_matcher(gestalt_img_0, gestalt_img1, depth_images):
import torchvision.transforms as transforms
rgb_to_gray = transforms.Compose([
transforms.ToPILImage(), # Convert tensor to PIL image
transforms.Grayscale(num_output_channels=1), # Convert to grayscale
transforms.ToTensor() # Convert back to tensor
])
device = 'cpu'#torch.device('cuda' if torch.cuda.is_available() else 'cpu')
w, h = depth_images.size
gest_seg_0 = gestalt_img_0.resize(depth_images.size)
gest_seg_0 = gest_seg_0.convert('L')
gest_seg_0_np = np.array(gest_seg_0)
gest_seg_0_tensor = K.image_to_tensor(gest_seg_0_np, False).float().to(device)
img1 = K.geometry.resize(gest_seg_0_tensor, (int(h/4), int(w/4))) / 255
gest_seg_1 = gestalt_img1.resize(depth_images.size)
gest_seg_1 = gest_seg_1.convert('L')
gest_seg_1_np = np.array(gest_seg_1)
gest_seg_1_tensor = K.image_to_tensor(gest_seg_1_np, False).float().to(device)
img2 = K.geometry.resize(gest_seg_1_tensor, (int(h/4), int(w/4))) / 255
num_features = 8192
disk = KF.DISK.from_pretrained("depth").to(device)
hw1 = torch.tensor(img1.shape[2:], device=device)
hw2 = torch.tensor(img2.shape[2:], device=device)
lg_matcher = KF.LightGlueMatcher("disk").eval().to(device)
with torch.no_grad():
inp = torch.cat([img1, img2], dim=0)
features1, features2 = disk(inp, num_features, pad_if_not_divisible=True)
kps1, descs1 = features1.keypoints, features1.descriptors
kps2, descs2 = features2.keypoints, features2.descriptors
lafs1 = KF.laf_from_center_scale_ori(kps1[None], torch.ones(1, len(kps1), 1, 1, device=device))
lafs2 = KF.laf_from_center_scale_ori(kps2[None], torch.ones(1, len(kps2), 1, 1, device=device))
dists, idxs = lg_matcher(descs1, descs2, lafs1, lafs2, hw1=hw1, hw2=hw2)
print(f"{idxs.shape[0]} tentative matches with DISK LightGlue")
lg = KF.LightGlue("disk").to(device).eval()
image0 = {
"keypoints": features1.keypoints[None],
"descriptors": features1.descriptors[None],
"image_size": torch.tensor(img1.shape[-2:][::-1]).view(1, 2).to(device),
}
image1 = {
"keypoints": features2.keypoints[None],
"descriptors": features2.descriptors[None],
"image_size": torch.tensor(img2.shape[-2:][::-1]).view(1, 2).to(device),
}
with torch.inference_mode():
out = lg({"image0": image0, "image1": image1})
idxs = out["matches"][0]
print(f"{idxs.shape[0]} tentative matches with DISK LightGlue")
def get_matching_keypoints(kp1, kp2, idxs):
mkpts1 = kp1[idxs[:, 0]]
mkpts2 = kp2[idxs[:, 1]]
return mkpts1, mkpts2
mkpts0, mkpts1 = get_matching_keypoints(kps1, kps2, idxs)
mkpts0*=4
mkpts1*=4
return mkpts0, mkpts1
def save_image_with_keypoints(filename: str, image: np.ndarray, keypoints: np.ndarray, color: Tuple[int, int, int]) -> np.ndarray:
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
for keypoint in keypoints:
pt = (int(keypoint[0]), int(keypoint[1]))
cv2.circle(image, pt, 4, color, -1)
# save as png
cv2.imwrite(filename, image)
###### added for lines detection ######
def save_image_with_lines(filename: str, image: np.ndarray, lines: np.ndarray, color: Tuple[int, int, int]) -> None:
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
for line in lines:
pt1 = (int(line[0][1]), int(line[0][0]))
pt2 = (int(line[1][1]), int(line[1][0]))
cv2.line(image, pt1, pt2, color, 2)
cv2.imwrite(filename, image)
def line_matcher(gestalt_img_0, gestalt_img1, depth_images, line_th=0.1):
import torchvision.transforms as transforms
rgb_to_gray = transforms.Compose([
transforms.ToPILImage(), # Convert tensor to PIL image
transforms.Grayscale(num_output_channels=1), # Convert to grayscale
transforms.ToTensor() # Convert back to tensor
])
device = 'cpu'
w, h = depth_images.size
gest_seg_0 = gestalt_img_0.resize(depth_images.size)
gest_seg_0 = gest_seg_0.convert('L')
gest_seg_0_np = np.array(gest_seg_0)
gest_seg_0_tensor = K.image_to_tensor(gest_seg_0_np, False).float().to(device)
img1 = K.geometry.resize(gest_seg_0_tensor, (int(h/4), int(w/4))) / 255
gest_seg_1 = gestalt_img1.resize(depth_images.size)
gest_seg_1 = gest_seg_1.convert('L')
gest_seg_1_np = np.array(gest_seg_1)
gest_seg_1_tensor = K.image_to_tensor(gest_seg_1_np, False).float().to(device)
img2 = K.geometry.resize(gest_seg_1_tensor, (int(h/4), int(w/4))) / 255
sold2 = KF.SOLD2(pretrained=True, config=None)
imgs = torch.cat([img1, img2], dim=0)
with torch.inference_mode():
outputs = sold2(imgs)
print(outputs.keys())
line_seg1 = outputs["line_segments"][0]
line_seg2 = outputs["line_segments"][1]
desc1 = outputs["dense_desc"][0]
desc2 = outputs["dense_desc"][1]
# print("Input dict shape", input_dict["image0"].shape, input_dict["image1"].shape)
with torch.no_grad():
matches = sold2.match(line_seg1, line_seg2, desc1[None], desc2[None])
valid_matches = matches != -1
match_indices = matches[valid_matches]
matched_lines1 = line_seg1[valid_matches] * 4
matched_lines2 = line_seg2[match_indices] * 4
# filter out lines each single point is in [0 - W, 0.4H - H] w=1920, h=1080
heigt_th = int(0.6 * h)
# filter_indices = (matched_lines1[:, 0, 1] < heigt_th).all(1) & (matched_lines1[:, 0, 1] < heigt_th).all(1)
filter_indices = (matched_lines1[:, :, 0] < heigt_th).all(axis=1) & \
(matched_lines2[:, :, 0] < heigt_th).all(axis=1)
matched_lines1 = matched_lines1[filter_indices]
matched_lines2 = matched_lines2[filter_indices]
return matched_lines1, matched_lines2
from scipy.ndimage import center_of_mass
proximity_threshold = 225
def find_nearest_point(target_point, points, threshold):
if isinstance(target_point, torch.Tensor):
target_point = target_point.numpy()
if target_point.ndim == 2 and target_point.shape[0] == 1:
target_point = target_point[0]
if points.shape[1] != target_point.shape[0]:
raise ValueError("Shape mismatch: points and target_point must have the same number of dimensions")
distances = np.linalg.norm(points - target_point, axis=1)
min_distance_index = np.argmin(distances)
if distances[min_distance_index] < threshold:
return points[min_distance_index], min_distance_index
return None, None
def replace_with_center_of_mass(point, mask):
y, x = int(point[1]), int(point[0])
region_mask = (mask == mask[y, x])
com = center_of_mass(region_mask)
return np.array([com[1], com[0]]) # Return as (x, y)
# Gestalt color mapping
gestalt_color_mapping = {
'unclassified': [215, 62, 138],
'apex': [235, 88, 48],
'eave_end_point': [248, 130, 228],
'eave': [54, 243, 63],
'ridge': [214, 251, 248],
'rake': [13, 94, 47],
'valley': [85, 27, 65],
'unknown': [127, 127, 127]
}
def extract_segmented_area(image: np.ndarray, color: List[int]) -> np.ndarray:
lower = np.array(color) - 3 # 0.5
upper = np.array(color) + 3 # 0.5
mask = cv2.inRange(image, lower, upper)
return mask
def combine_masks(image: np.ndarray, color_mapping: dict) -> np.ndarray:
combined_mask = np.zeros(image.shape[:2], dtype=np.uint8)
for color in color_mapping.values():
mask = extract_segmented_area(image, color)
combined_mask = cv2.bitwise_or(combined_mask, mask)
return combined_mask
def filter_points_by_mask(points: np.ndarray, mask: np.ndarray) -> np.ndarray:
filtered_points = []
filtered_indices = []
for idx, point in enumerate(points):
y, x = int(point[1]), int(point[0])
if mask[y, x] > 0:
filtered_points.append(point)
filtered_indices.append(idx)
return np.array(filtered_points), filtered_indices
###### added for lines detection ########
def triangulate_points(mkpts0, mkpts1, R_0, t_0, R_1, t_1, intrinsics):
P0 = intrinsics @ np.hstack((R_0, t_0.reshape(-1, 1)))
P1 = intrinsics @ np.hstack((R_1, t_1.reshape(-1, 1)))
mkpts0_h = np.vstack((mkpts0.T, np.ones((1, mkpts0.shape[0]))))
mkpts1_h = np.vstack((mkpts1.T, np.ones((1, mkpts1.shape[0]))))
points_4D_hom = cv2.triangulatePoints(P0, P1, mkpts0_h[:2], mkpts1_h[:2])
points_3D = points_4D_hom / points_4D_hom[3]
return points_3D[:3].T
def predict(entry, visualize=False) -> Tuple[np.ndarray, List[int]]:
good_entry = convert_entry_to_human_readable(entry)
vert_edge_per_image = {}
for i, (gest, depth, K, R, t) in enumerate(zip(good_entry['gestalt'],
good_entry['depthcm'],
good_entry['K'],
good_entry['R'],
good_entry['t']
)):
# LoFTR matching keypoints
if i < 2:
j = i + 1
else:
j = 0
correspondences, mkpts0, mkpts1 = loftr_matcher(good_entry['gestalt'][i], good_entry['gestalt'][j], good_entry['depthcm'][i])
# mkpts0, mkpts1 = disk_matcher(good_entry['gestalt'][i], good_entry['gestalt'][j], good_entry['depthcm'][i])
# Added by Tang: apply mask to filter out keypoints in mkpts0
gest_seg_np = np.array(gest.resize(depth.size)).astype(np.uint8)
gest_seg_0 = np.array(good_entry['gestalt'][i].resize(depth.size)).astype(np.uint8)
gest_seg_1 = np.array(good_entry['gestalt'][j].resize(depth.size)).astype(np.uint8)
combined_mask_0 = combine_masks(gest_seg_0, gestalt_color_mapping)
combined_mask_1 = combine_masks(gest_seg_1, gestalt_color_mapping)
mkpts_filtered_0, indice_0 = filter_points_by_mask(mkpts0, combined_mask_0)
mkpts_filtered_1 = mkpts1[indice_0]
# Add NMS for 2D keypoints
mkpts_filtered_0, filtered_index = non_maximum_suppression(mkpts_filtered_0, 50)
mkpts_filtered_1 = mkpts_filtered_1[filtered_index]
# save_image_with_keypoints(f'keypoints_{i}.png', np.array(good_entry['gestalt'][i]), mkpts_filtered_0, (255, 0, 0))
# save_image_with_keypoints(f'keypoints_{j}.png', np.array(good_entry['gestalt'][j]), mkpts_filtered_1, (255, 0, 0))
# Triangulation with matched keypoints
R_0 = good_entry['R'][i]
t_0 = good_entry['t'][i]
R_1 = good_entry['R'][j]
t_1 = good_entry['t'][j]
intrinsics = K
points_3d = triangulate_points(mkpts_filtered_0, mkpts_filtered_1, R_0, t_0, R_1, t_1, intrinsics)
# Line matching
line_0, line_1 = line_matcher(good_entry['gestalt'][i], good_entry['gestalt'][j], good_entry['depthcm'][i])
vertices, connections = get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th = 5.)
apex_points = np.array([v['xy'] for v in vertices if v['type'] == 'apex'])
eave_end_points = np.array([v['xy'] for v in vertices if v['type'] == 'eave_end_point'])
# Adjust lines based on proximity to points_3d, apex, and eave_end_points
adjusted_lines = []
connections_idx = set()
matched_lines = line_matcher(good_entry['gestalt'][i], good_entry['gestalt'][j], good_entry['depthcm'][i])
for line in matched_lines[0]:
line = line.numpy()
index_0 = -1
index_1 = -1
for k in range(2):
nearest_point_2d, index = find_nearest_point(line[k], mkpts_filtered_0, proximity_threshold)
connection = None
if nearest_point_2d is not None:
line[k] = torch.tensor(nearest_point_2d, dtype=torch.float32)
if k == 0:
index_0 = index
if k == 1:
index_1 = index
if index_0 != index_1 and index_0 != -1 and index_1 != -1:
connection = (index_0, index_1)
# append all indices of the matched lines
connections_idx.add(connection) if connection is not None else None
adjusted_lines.append(line)
connections_idx = list(connections_idx)
adjusted_lines = np.array(adjusted_lines)
# save_image_with_lines(f'line_{i}.png', np.array(good_entry['gestalt'][i]), line_0, (255, 0, 0))
# save_image_with_lines(f'line_{j}.png', np.array(good_entry['gestalt'][j]), line_1, (255, 0, 0))
gest_seg = gest.resize(depth.size)
gest_seg_np = np.array(gest_seg).astype(np.uint8)
# Metric3D
depth_np = np.array(depth) / 2.5 # 2.5 is the scale estimation coefficient
vertices, connections = get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th = 5.)
if (len(vertices) < 2) or (len(connections) < 1):
print (f'Not enough vertices or connections in image {i}')
vert_edge_per_image[i] = np.empty((0, 2)), [], np.empty((0, 3))
# continue
uv, depth_vert = get_uv_depth(vertices, depth_np)
# monodepth
# r<32 scale = colmap depth / monodepth
# monodepth /= scale
# # Assuming monodepth is provided similarly as depth
# monodepth = ?
# scale = np.mean(depth_np / monodepth)
# monodepth /= scale
# Normalize the uv to the camera intrinsics
xy_local = np.ones((len(uv), 3))
xy_local[:, 0] = (uv[:, 0] - K[0,2]) / K[0,0]
xy_local[:, 1] = (uv[:, 1] - K[1,2]) / K[1,1]
# Get the 3D vertices
vertices_3d_local = depth_vert[...,None] * (xy_local/np.linalg.norm(xy_local, axis=1)[...,None])
world_to_cam = np.eye(4)
world_to_cam[:3, :3] = R
world_to_cam[:3, 3] = t.reshape(-1)
cam_to_world = np.linalg.inv(world_to_cam)
vertices_3d = cv2.transform(cv2.convertPointsToHomogeneous(vertices_3d_local), cam_to_world)
vertices_3d = cv2.convertPointsFromHomogeneous(vertices_3d).reshape(-1, 3)
# vert_edge_per_image[i] = vertices, connections, vertices_3d
# ours method
vert_edge_per_image[i] = connections_idx, points_3d
all_3d_vertices, connections_3d = merge_vertices_3d_ours(vert_edge_per_image, 3.0)
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(all_3d_vertices)
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=10, std_ratio=0.05)
inlier_cloud = pcd.select_by_index(ind)
filtered_vertices = np.asarray(inlier_cloud.points)
all_3d_vertices_clean = filtered_vertices
concatenated_list = []
# Iterate over each sublist in connections_3d_clean and extend the main list
for sublist in connections_3d:
concatenated_list.extend(sublist)
connections_3d_clean = concatenated_list
print (f'{len(all_3d_vertices_clean)} vertices and {len(connections_3d_clean)} connections in the 3D vertices')
if (len(all_3d_vertices_clean) < 2) or len(connections_3d_clean) < 1:
print (f'Not enough vertices or connections in the 3D vertices')
return (good_entry['__key__'], *empty_solution())
if visualize:
from hoho.viz3d import plot_estimate_and_gt
plot_estimate_and_gt( all_3d_vertices_clean,
connections_3d_clean,
good_entry['wf_vertices'],
good_entry['wf_edges'])
return good_entry['__key__'], all_3d_vertices_clean, connections_3d_clean