consciousAI's picture
Upload 11 files
c000ec4
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - mteb
model-index:
  - name: cai-stellaris-text-embeddings
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 64.86567164179104
          - type: ap
            value: 28.30760041689409
          - type: f1
            value: 59.08589995918376
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 65.168625
          - type: ap
            value: 60.131922961382166
          - type: f1
            value: 65.02463910192814
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 31.016
          - type: f1
            value: 30.501226228002924
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.609
          - type: map_at_10
            value: 38.793
          - type: map_at_100
            value: 40.074
          - type: map_at_1000
            value: 40.083
          - type: map_at_3
            value: 33.736
          - type: map_at_5
            value: 36.642
          - type: mrr_at_1
            value: 25.533
          - type: mrr_at_10
            value: 39.129999999999995
          - type: mrr_at_100
            value: 40.411
          - type: mrr_at_1000
            value: 40.42
          - type: mrr_at_3
            value: 34.033
          - type: mrr_at_5
            value: 36.956
          - type: ndcg_at_1
            value: 24.609
          - type: ndcg_at_10
            value: 47.288000000000004
          - type: ndcg_at_100
            value: 52.654999999999994
          - type: ndcg_at_1000
            value: 52.88699999999999
          - type: ndcg_at_3
            value: 36.86
          - type: ndcg_at_5
            value: 42.085
          - type: precision_at_1
            value: 24.609
          - type: precision_at_10
            value: 7.468
          - type: precision_at_100
            value: 0.979
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 15.315000000000001
          - type: precision_at_5
            value: 11.721
          - type: recall_at_1
            value: 24.609
          - type: recall_at_10
            value: 74.68
          - type: recall_at_100
            value: 97.866
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 45.946
          - type: recall_at_5
            value: 58.606
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 42.014046191286525
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 31.406159641263052
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 60.35266033223575
          - type: mrr
            value: 72.66796376907179
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 74.12337662337661
          - type: f1
            value: 73.12122145084057
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 34.72513663347855
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 29.280150859689826
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.787
          - type: map_at_10
            value: 30.409000000000002
          - type: map_at_100
            value: 31.947
          - type: map_at_1000
            value: 32.09
          - type: map_at_3
            value: 27.214
          - type: map_at_5
            value: 28.810999999999996
          - type: mrr_at_1
            value: 27.039
          - type: mrr_at_10
            value: 35.581
          - type: mrr_at_100
            value: 36.584
          - type: mrr_at_1000
            value: 36.645
          - type: mrr_at_3
            value: 32.713
          - type: mrr_at_5
            value: 34.272999999999996
          - type: ndcg_at_1
            value: 27.039
          - type: ndcg_at_10
            value: 36.157000000000004
          - type: ndcg_at_100
            value: 42.598
          - type: ndcg_at_1000
            value: 45.207
          - type: ndcg_at_3
            value: 30.907
          - type: ndcg_at_5
            value: 33.068
          - type: precision_at_1
            value: 27.039
          - type: precision_at_10
            value: 7.295999999999999
          - type: precision_at_100
            value: 1.303
          - type: precision_at_1000
            value: 0.186
          - type: precision_at_3
            value: 14.926
          - type: precision_at_5
            value: 11.044
          - type: recall_at_1
            value: 21.787
          - type: recall_at_10
            value: 47.693999999999996
          - type: recall_at_100
            value: 75.848
          - type: recall_at_1000
            value: 92.713
          - type: recall_at_3
            value: 32.92
          - type: recall_at_5
            value: 38.794000000000004
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.560000000000002
          - type: map_at_10
            value: 34.756
          - type: map_at_100
            value: 36.169000000000004
          - type: map_at_1000
            value: 36.298
          - type: map_at_3
            value: 31.592
          - type: map_at_5
            value: 33.426
          - type: mrr_at_1
            value: 31.274
          - type: mrr_at_10
            value: 40.328
          - type: mrr_at_100
            value: 41.125
          - type: mrr_at_1000
            value: 41.171
          - type: mrr_at_3
            value: 37.866
          - type: mrr_at_5
            value: 39.299
          - type: ndcg_at_1
            value: 31.338
          - type: ndcg_at_10
            value: 40.696
          - type: ndcg_at_100
            value: 45.922000000000004
          - type: ndcg_at_1000
            value: 47.982
          - type: ndcg_at_3
            value: 36.116
          - type: ndcg_at_5
            value: 38.324000000000005
          - type: precision_at_1
            value: 31.338
          - type: precision_at_10
            value: 8.083
          - type: precision_at_100
            value: 1.4040000000000001
          - type: precision_at_1000
            value: 0.189
          - type: precision_at_3
            value: 18.089
          - type: precision_at_5
            value: 13.159
          - type: recall_at_1
            value: 24.560000000000002
          - type: recall_at_10
            value: 51.832
          - type: recall_at_100
            value: 74.26899999999999
          - type: recall_at_1000
            value: 87.331
          - type: recall_at_3
            value: 38.086999999999996
          - type: recall_at_5
            value: 44.294
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 27.256999999999998
          - type: map_at_10
            value: 38.805
          - type: map_at_100
            value: 40.04
          - type: map_at_1000
            value: 40.117000000000004
          - type: map_at_3
            value: 35.425000000000004
          - type: map_at_5
            value: 37.317
          - type: mrr_at_1
            value: 31.912000000000003
          - type: mrr_at_10
            value: 42.045
          - type: mrr_at_100
            value: 42.956
          - type: mrr_at_1000
            value: 43.004
          - type: mrr_at_3
            value: 39.195
          - type: mrr_at_5
            value: 40.866
          - type: ndcg_at_1
            value: 31.912000000000003
          - type: ndcg_at_10
            value: 44.826
          - type: ndcg_at_100
            value: 49.85
          - type: ndcg_at_1000
            value: 51.562
          - type: ndcg_at_3
            value: 38.845
          - type: ndcg_at_5
            value: 41.719
          - type: precision_at_1
            value: 31.912000000000003
          - type: precision_at_10
            value: 7.768
          - type: precision_at_100
            value: 1.115
          - type: precision_at_1000
            value: 0.131
          - type: precision_at_3
            value: 18.015
          - type: precision_at_5
            value: 12.814999999999998
          - type: recall_at_1
            value: 27.256999999999998
          - type: recall_at_10
            value: 59.611999999999995
          - type: recall_at_100
            value: 81.324
          - type: recall_at_1000
            value: 93.801
          - type: recall_at_3
            value: 43.589
          - type: recall_at_5
            value: 50.589
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 15.588
          - type: map_at_10
            value: 22.936999999999998
          - type: map_at_100
            value: 24.015
          - type: map_at_1000
            value: 24.127000000000002
          - type: map_at_3
            value: 20.47
          - type: map_at_5
            value: 21.799
          - type: mrr_at_1
            value: 16.723
          - type: mrr_at_10
            value: 24.448
          - type: mrr_at_100
            value: 25.482
          - type: mrr_at_1000
            value: 25.568999999999996
          - type: mrr_at_3
            value: 21.94
          - type: mrr_at_5
            value: 23.386000000000003
          - type: ndcg_at_1
            value: 16.723
          - type: ndcg_at_10
            value: 27.451999999999998
          - type: ndcg_at_100
            value: 33.182
          - type: ndcg_at_1000
            value: 36.193999999999996
          - type: ndcg_at_3
            value: 22.545
          - type: ndcg_at_5
            value: 24.837
          - type: precision_at_1
            value: 16.723
          - type: precision_at_10
            value: 4.5760000000000005
          - type: precision_at_100
            value: 0.7929999999999999
          - type: precision_at_1000
            value: 0.11
          - type: precision_at_3
            value: 9.944
          - type: precision_at_5
            value: 7.321999999999999
          - type: recall_at_1
            value: 15.588
          - type: recall_at_10
            value: 40.039
          - type: recall_at_100
            value: 67.17699999999999
          - type: recall_at_1000
            value: 90.181
          - type: recall_at_3
            value: 26.663999999999998
          - type: recall_at_5
            value: 32.144
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 12.142999999999999
          - type: map_at_10
            value: 18.355
          - type: map_at_100
            value: 19.611
          - type: map_at_1000
            value: 19.750999999999998
          - type: map_at_3
            value: 16.073999999999998
          - type: map_at_5
            value: 17.187
          - type: mrr_at_1
            value: 15.547
          - type: mrr_at_10
            value: 22.615
          - type: mrr_at_100
            value: 23.671
          - type: mrr_at_1000
            value: 23.759
          - type: mrr_at_3
            value: 20.149
          - type: mrr_at_5
            value: 21.437
          - type: ndcg_at_1
            value: 15.547
          - type: ndcg_at_10
            value: 22.985
          - type: ndcg_at_100
            value: 29.192
          - type: ndcg_at_1000
            value: 32.448
          - type: ndcg_at_3
            value: 18.503
          - type: ndcg_at_5
            value: 20.322000000000003
          - type: precision_at_1
            value: 15.547
          - type: precision_at_10
            value: 4.49
          - type: precision_at_100
            value: 0.8840000000000001
          - type: precision_at_1000
            value: 0.129
          - type: precision_at_3
            value: 8.872
          - type: precision_at_5
            value: 6.741
          - type: recall_at_1
            value: 12.142999999999999
          - type: recall_at_10
            value: 33.271
          - type: recall_at_100
            value: 60.95399999999999
          - type: recall_at_1000
            value: 83.963
          - type: recall_at_3
            value: 20.645
          - type: recall_at_5
            value: 25.34
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.09
          - type: map_at_10
            value: 30.220000000000002
          - type: map_at_100
            value: 31.741999999999997
          - type: map_at_1000
            value: 31.878
          - type: map_at_3
            value: 27.455000000000002
          - type: map_at_5
            value: 28.808
          - type: mrr_at_1
            value: 27.718999999999998
          - type: mrr_at_10
            value: 35.476
          - type: mrr_at_100
            value: 36.53
          - type: mrr_at_1000
            value: 36.602000000000004
          - type: mrr_at_3
            value: 33.157
          - type: mrr_at_5
            value: 34.36
          - type: ndcg_at_1
            value: 27.718999999999998
          - type: ndcg_at_10
            value: 35.547000000000004
          - type: ndcg_at_100
            value: 42.079
          - type: ndcg_at_1000
            value: 44.861000000000004
          - type: ndcg_at_3
            value: 30.932
          - type: ndcg_at_5
            value: 32.748
          - type: precision_at_1
            value: 27.718999999999998
          - type: precision_at_10
            value: 6.795
          - type: precision_at_100
            value: 1.194
          - type: precision_at_1000
            value: 0.163
          - type: precision_at_3
            value: 14.758
          - type: precision_at_5
            value: 10.549
          - type: recall_at_1
            value: 22.09
          - type: recall_at_10
            value: 46.357
          - type: recall_at_100
            value: 74.002
          - type: recall_at_1000
            value: 92.99199999999999
          - type: recall_at_3
            value: 33.138
          - type: recall_at_5
            value: 38.034
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 16.904
          - type: map_at_10
            value: 25.075999999999997
          - type: map_at_100
            value: 26.400000000000002
          - type: map_at_1000
            value: 26.525
          - type: map_at_3
            value: 22.191
          - type: map_at_5
            value: 23.947
          - type: mrr_at_1
            value: 21.461
          - type: mrr_at_10
            value: 29.614
          - type: mrr_at_100
            value: 30.602
          - type: mrr_at_1000
            value: 30.677
          - type: mrr_at_3
            value: 27.017000000000003
          - type: mrr_at_5
            value: 28.626
          - type: ndcg_at_1
            value: 21.461
          - type: ndcg_at_10
            value: 30.304
          - type: ndcg_at_100
            value: 36.521
          - type: ndcg_at_1000
            value: 39.366
          - type: ndcg_at_3
            value: 25.267
          - type: ndcg_at_5
            value: 27.918
          - type: precision_at_1
            value: 21.461
          - type: precision_at_10
            value: 5.868
          - type: precision_at_100
            value: 1.072
          - type: precision_at_1000
            value: 0.151
          - type: precision_at_3
            value: 12.291
          - type: precision_at_5
            value: 9.429
          - type: recall_at_1
            value: 16.904
          - type: recall_at_10
            value: 41.521
          - type: recall_at_100
            value: 68.919
          - type: recall_at_1000
            value: 88.852
          - type: recall_at_3
            value: 27.733999999999998
          - type: recall_at_5
            value: 34.439
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 18.327916666666667
          - type: map_at_10
            value: 26.068
          - type: map_at_100
            value: 27.358833333333333
          - type: map_at_1000
            value: 27.491583333333335
          - type: map_at_3
            value: 23.45508333333333
          - type: map_at_5
            value: 24.857916666666664
          - type: mrr_at_1
            value: 22.05066666666667
          - type: mrr_at_10
            value: 29.805083333333332
          - type: mrr_at_100
            value: 30.80283333333333
          - type: mrr_at_1000
            value: 30.876166666666666
          - type: mrr_at_3
            value: 27.381083333333333
          - type: mrr_at_5
            value: 28.72441666666667
          - type: ndcg_at_1
            value: 22.056000000000004
          - type: ndcg_at_10
            value: 31.029416666666666
          - type: ndcg_at_100
            value: 36.90174999999999
          - type: ndcg_at_1000
            value: 39.716249999999995
          - type: ndcg_at_3
            value: 26.35533333333333
          - type: ndcg_at_5
            value: 28.471500000000006
          - type: precision_at_1
            value: 22.056000000000004
          - type: precision_at_10
            value: 5.7645833333333325
          - type: precision_at_100
            value: 1.0406666666666666
          - type: precision_at_1000
            value: 0.14850000000000002
          - type: precision_at_3
            value: 12.391416666666666
          - type: precision_at_5
            value: 9.112499999999999
          - type: recall_at_1
            value: 18.327916666666667
          - type: recall_at_10
            value: 42.15083333333333
          - type: recall_at_100
            value: 68.38666666666666
          - type: recall_at_1000
            value: 88.24183333333333
          - type: recall_at_3
            value: 29.094416666666667
          - type: recall_at_5
            value: 34.48716666666666
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 15.009
          - type: map_at_10
            value: 21.251
          - type: map_at_100
            value: 22.337
          - type: map_at_1000
            value: 22.455
          - type: map_at_3
            value: 19.241
          - type: map_at_5
            value: 20.381
          - type: mrr_at_1
            value: 17.638
          - type: mrr_at_10
            value: 24.184
          - type: mrr_at_100
            value: 25.156
          - type: mrr_at_1000
            value: 25.239
          - type: mrr_at_3
            value: 22.29
          - type: mrr_at_5
            value: 23.363999999999997
          - type: ndcg_at_1
            value: 17.638
          - type: ndcg_at_10
            value: 25.269000000000002
          - type: ndcg_at_100
            value: 30.781999999999996
          - type: ndcg_at_1000
            value: 33.757
          - type: ndcg_at_3
            value: 21.457
          - type: ndcg_at_5
            value: 23.293
          - type: precision_at_1
            value: 17.638
          - type: precision_at_10
            value: 4.294
          - type: precision_at_100
            value: 0.771
          - type: precision_at_1000
            value: 0.11100000000000002
          - type: precision_at_3
            value: 9.815999999999999
          - type: precision_at_5
            value: 7.086
          - type: recall_at_1
            value: 15.009
          - type: recall_at_10
            value: 35.014
          - type: recall_at_100
            value: 60.45399999999999
          - type: recall_at_1000
            value: 82.416
          - type: recall_at_3
            value: 24.131
          - type: recall_at_5
            value: 28.846
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 12.518
          - type: map_at_10
            value: 18.226
          - type: map_at_100
            value: 19.355
          - type: map_at_1000
            value: 19.496
          - type: map_at_3
            value: 16.243
          - type: map_at_5
            value: 17.288999999999998
          - type: mrr_at_1
            value: 15.382000000000001
          - type: mrr_at_10
            value: 21.559
          - type: mrr_at_100
            value: 22.587
          - type: mrr_at_1000
            value: 22.677
          - type: mrr_at_3
            value: 19.597
          - type: mrr_at_5
            value: 20.585
          - type: ndcg_at_1
            value: 15.382000000000001
          - type: ndcg_at_10
            value: 22.198
          - type: ndcg_at_100
            value: 27.860000000000003
          - type: ndcg_at_1000
            value: 31.302999999999997
          - type: ndcg_at_3
            value: 18.541
          - type: ndcg_at_5
            value: 20.089000000000002
          - type: precision_at_1
            value: 15.382000000000001
          - type: precision_at_10
            value: 4.178
          - type: precision_at_100
            value: 0.8380000000000001
          - type: precision_at_1000
            value: 0.132
          - type: precision_at_3
            value: 8.866999999999999
          - type: precision_at_5
            value: 6.476
          - type: recall_at_1
            value: 12.518
          - type: recall_at_10
            value: 31.036
          - type: recall_at_100
            value: 56.727000000000004
          - type: recall_at_1000
            value: 81.66799999999999
          - type: recall_at_3
            value: 20.610999999999997
          - type: recall_at_5
            value: 24.744
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 18.357
          - type: map_at_10
            value: 25.384
          - type: map_at_100
            value: 26.640000000000004
          - type: map_at_1000
            value: 26.762999999999998
          - type: map_at_3
            value: 22.863
          - type: map_at_5
            value: 24.197
          - type: mrr_at_1
            value: 21.735
          - type: mrr_at_10
            value: 29.069
          - type: mrr_at_100
            value: 30.119
          - type: mrr_at_1000
            value: 30.194
          - type: mrr_at_3
            value: 26.663999999999998
          - type: mrr_at_5
            value: 27.904
          - type: ndcg_at_1
            value: 21.735
          - type: ndcg_at_10
            value: 30.153999999999996
          - type: ndcg_at_100
            value: 36.262
          - type: ndcg_at_1000
            value: 39.206
          - type: ndcg_at_3
            value: 25.365
          - type: ndcg_at_5
            value: 27.403
          - type: precision_at_1
            value: 21.735
          - type: precision_at_10
            value: 5.354
          - type: precision_at_100
            value: 0.958
          - type: precision_at_1000
            value: 0.134
          - type: precision_at_3
            value: 11.567
          - type: precision_at_5
            value: 8.469999999999999
          - type: recall_at_1
            value: 18.357
          - type: recall_at_10
            value: 41.205000000000005
          - type: recall_at_100
            value: 68.30000000000001
          - type: recall_at_1000
            value: 89.294
          - type: recall_at_3
            value: 27.969
          - type: recall_at_5
            value: 32.989000000000004
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 18.226
          - type: map_at_10
            value: 25.766
          - type: map_at_100
            value: 27.345000000000002
          - type: map_at_1000
            value: 27.575
          - type: map_at_3
            value: 22.945999999999998
          - type: map_at_5
            value: 24.383
          - type: mrr_at_1
            value: 21.542
          - type: mrr_at_10
            value: 29.448
          - type: mrr_at_100
            value: 30.509999999999998
          - type: mrr_at_1000
            value: 30.575000000000003
          - type: mrr_at_3
            value: 26.482
          - type: mrr_at_5
            value: 28.072999999999997
          - type: ndcg_at_1
            value: 21.542
          - type: ndcg_at_10
            value: 31.392999999999997
          - type: ndcg_at_100
            value: 37.589
          - type: ndcg_at_1000
            value: 40.717
          - type: ndcg_at_3
            value: 26.179000000000002
          - type: ndcg_at_5
            value: 28.557
          - type: precision_at_1
            value: 21.542
          - type: precision_at_10
            value: 6.462
          - type: precision_at_100
            value: 1.415
          - type: precision_at_1000
            value: 0.234
          - type: precision_at_3
            value: 12.187000000000001
          - type: precision_at_5
            value: 9.605
          - type: recall_at_1
            value: 18.226
          - type: recall_at_10
            value: 42.853
          - type: recall_at_100
            value: 70.97200000000001
          - type: recall_at_1000
            value: 91.662
          - type: recall_at_3
            value: 28.555999999999997
          - type: recall_at_5
            value: 34.203
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 15.495999999999999
          - type: map_at_10
            value: 21.631
          - type: map_at_100
            value: 22.705000000000002
          - type: map_at_1000
            value: 22.823999999999998
          - type: map_at_3
            value: 19.747
          - type: map_at_5
            value: 20.75
          - type: mrr_at_1
            value: 16.636
          - type: mrr_at_10
            value: 23.294
          - type: mrr_at_100
            value: 24.312
          - type: mrr_at_1000
            value: 24.401999999999997
          - type: mrr_at_3
            value: 21.503
          - type: mrr_at_5
            value: 22.52
          - type: ndcg_at_1
            value: 16.636
          - type: ndcg_at_10
            value: 25.372
          - type: ndcg_at_100
            value: 30.984
          - type: ndcg_at_1000
            value: 33.992
          - type: ndcg_at_3
            value: 21.607000000000003
          - type: ndcg_at_5
            value: 23.380000000000003
          - type: precision_at_1
            value: 16.636
          - type: precision_at_10
            value: 4.011
          - type: precision_at_100
            value: 0.741
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 9.365
          - type: precision_at_5
            value: 6.654
          - type: recall_at_1
            value: 15.495999999999999
          - type: recall_at_10
            value: 35.376000000000005
          - type: recall_at_100
            value: 61.694
          - type: recall_at_1000
            value: 84.029
          - type: recall_at_3
            value: 25.089
          - type: recall_at_5
            value: 29.43
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 4.662
          - type: map_at_10
            value: 8.638
          - type: map_at_100
            value: 9.86
          - type: map_at_1000
            value: 10.032
          - type: map_at_3
            value: 6.793
          - type: map_at_5
            value: 7.761
          - type: mrr_at_1
            value: 10.684000000000001
          - type: mrr_at_10
            value: 17.982
          - type: mrr_at_100
            value: 19.152
          - type: mrr_at_1000
            value: 19.231
          - type: mrr_at_3
            value: 15.113999999999999
          - type: mrr_at_5
            value: 16.658
          - type: ndcg_at_1
            value: 10.684000000000001
          - type: ndcg_at_10
            value: 13.483
          - type: ndcg_at_100
            value: 19.48
          - type: ndcg_at_1000
            value: 23.232
          - type: ndcg_at_3
            value: 9.75
          - type: ndcg_at_5
            value: 11.208
          - type: precision_at_1
            value: 10.684000000000001
          - type: precision_at_10
            value: 4.573
          - type: precision_at_100
            value: 1.085
          - type: precision_at_1000
            value: 0.17600000000000002
          - type: precision_at_3
            value: 7.514
          - type: precision_at_5
            value: 6.241
          - type: recall_at_1
            value: 4.662
          - type: recall_at_10
            value: 18.125
          - type: recall_at_100
            value: 39.675
          - type: recall_at_1000
            value: 61.332
          - type: recall_at_3
            value: 9.239
          - type: recall_at_5
            value: 12.863
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 3.869
          - type: map_at_10
            value: 8.701
          - type: map_at_100
            value: 11.806999999999999
          - type: map_at_1000
            value: 12.676000000000002
          - type: map_at_3
            value: 6.3100000000000005
          - type: map_at_5
            value: 7.471
          - type: mrr_at_1
            value: 38.5
          - type: mrr_at_10
            value: 48.754
          - type: mrr_at_100
            value: 49.544
          - type: mrr_at_1000
            value: 49.568
          - type: mrr_at_3
            value: 46.167
          - type: mrr_at_5
            value: 47.679
          - type: ndcg_at_1
            value: 30.5
          - type: ndcg_at_10
            value: 22.454
          - type: ndcg_at_100
            value: 25.380999999999997
          - type: ndcg_at_1000
            value: 31.582
          - type: ndcg_at_3
            value: 25.617
          - type: ndcg_at_5
            value: 24.254
          - type: precision_at_1
            value: 38.5
          - type: precision_at_10
            value: 18.4
          - type: precision_at_100
            value: 6.02
          - type: precision_at_1000
            value: 1.34
          - type: precision_at_3
            value: 29.083
          - type: precision_at_5
            value: 24.85
          - type: recall_at_1
            value: 3.869
          - type: recall_at_10
            value: 12.902
          - type: recall_at_100
            value: 30.496000000000002
          - type: recall_at_1000
            value: 51.066
          - type: recall_at_3
            value: 7.396
          - type: recall_at_5
            value: 9.852
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 36.705000000000005
          - type: f1
            value: 32.72625967901387
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 66.89840000000001
          - type: ap
            value: 61.43175045563333
          - type: f1
            value: 66.67945656405962
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 89.12676698586411
          - type: f1
            value: 88.48426641357668
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 62.61513907888736
          - type: f1
            value: 40.96251281624023
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 61.95359784801614
          - type: f1
            value: 58.85654625260125
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 70.1983860121049
          - type: f1
            value: 68.73455379435487
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 31.772017072895846
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 30.944581802089044
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 30.977328237697133
          - type: mrr
            value: 32.02612207306447
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 43.08588418858767
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 56.53785276450797
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 81.44882719207659
          - type: mrr
            value: 94.71082022552609
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.77821782178218
          - type: cos_sim_ap
            value: 93.22909989796688
          - type: cos_sim_f1
            value: 88.41778697001035
          - type: cos_sim_precision
            value: 91.54175588865097
          - type: cos_sim_recall
            value: 85.5
          - type: dot_accuracy
            value: 99.77821782178218
          - type: dot_ap
            value: 93.2290998979669
          - type: dot_f1
            value: 88.41778697001035
          - type: dot_precision
            value: 91.54175588865097
          - type: dot_recall
            value: 85.5
          - type: euclidean_accuracy
            value: 99.77821782178218
          - type: euclidean_ap
            value: 93.2290998979669
          - type: euclidean_f1
            value: 88.41778697001035
          - type: euclidean_precision
            value: 91.54175588865097
          - type: euclidean_recall
            value: 85.5
          - type: manhattan_accuracy
            value: 99.77524752475247
          - type: manhattan_ap
            value: 93.18492132451668
          - type: manhattan_f1
            value: 88.19552782111285
          - type: manhattan_precision
            value: 91.87432286023835
          - type: manhattan_recall
            value: 84.8
          - type: max_accuracy
            value: 99.77821782178218
          - type: max_ap
            value: 93.2290998979669
          - type: max_f1
            value: 88.41778697001035
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 48.225188905490285
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 34.76195959924048
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 48.16986372261003
          - type: mrr
            value: 48.7718837535014
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 63.567200000000014
          - type: ap
            value: 11.412292644030266
          - type: f1
            value: 49.102043399207716
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 51.04414261460101
          - type: f1
            value: 51.22880449155832
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 34.35595440606073
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 84.6754485307266
          - type: cos_sim_ap
            value: 69.6007143804539
          - type: cos_sim_f1
            value: 65.99822312476202
          - type: cos_sim_precision
            value: 63.58522866226461
          - type: cos_sim_recall
            value: 68.60158311345647
          - type: dot_accuracy
            value: 84.6754485307266
          - type: dot_ap
            value: 69.60070881520775
          - type: dot_f1
            value: 65.99822312476202
          - type: dot_precision
            value: 63.58522866226461
          - type: dot_recall
            value: 68.60158311345647
          - type: euclidean_accuracy
            value: 84.6754485307266
          - type: euclidean_ap
            value: 69.60071394457518
          - type: euclidean_f1
            value: 65.99822312476202
          - type: euclidean_precision
            value: 63.58522866226461
          - type: euclidean_recall
            value: 68.60158311345647
          - type: manhattan_accuracy
            value: 84.6754485307266
          - type: manhattan_ap
            value: 69.57324451019119
          - type: manhattan_f1
            value: 65.7235045917101
          - type: manhattan_precision
            value: 62.04311152764761
          - type: manhattan_recall
            value: 69.86807387862797
          - type: max_accuracy
            value: 84.6754485307266
          - type: max_ap
            value: 69.6007143804539
          - type: max_f1
            value: 65.99822312476202
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 87.63922847052432
          - type: cos_sim_ap
            value: 83.48934190421085
          - type: cos_sim_f1
            value: 75.42265503384861
          - type: cos_sim_precision
            value: 71.17868124359413
          - type: cos_sim_recall
            value: 80.20480443486295
          - type: dot_accuracy
            value: 87.63922847052432
          - type: dot_ap
            value: 83.4893468701264
          - type: dot_f1
            value: 75.42265503384861
          - type: dot_precision
            value: 71.17868124359413
          - type: dot_recall
            value: 80.20480443486295
          - type: euclidean_accuracy
            value: 87.63922847052432
          - type: euclidean_ap
            value: 83.48934073168017
          - type: euclidean_f1
            value: 75.42265503384861
          - type: euclidean_precision
            value: 71.17868124359413
          - type: euclidean_recall
            value: 80.20480443486295
          - type: manhattan_accuracy
            value: 87.66251406838204
          - type: manhattan_ap
            value: 83.46319621504654
          - type: manhattan_f1
            value: 75.41883304448297
          - type: manhattan_precision
            value: 71.0089747076421
          - type: manhattan_recall
            value: 80.41268863566368
          - type: max_accuracy
            value: 87.66251406838204
          - type: max_ap
            value: 83.4893468701264
          - type: max_f1
            value: 75.42265503384861

{MODEL_NAME}

This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 15607 with parameters:

{'batch_size': 48, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss with parameters:

{'scale': 20.0, 'similarity_fct': 'cos_sim'}

Parameters of the fit()-Method:

{
    "epochs": 10,
    "evaluation_steps": 0,
    "evaluator": "NoneType",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 1000,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (2): Normalize()
)

Citing & Authors