square_run_first_vote_full_pic_50
This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.8395
- F1 Macro: 0.2931
- F1 Micro: 0.3182
- F1 Weighted: 0.3126
- Precision Macro: 0.3510
- Precision Micro: 0.3182
- Precision Weighted: 0.3702
- Recall Macro: 0.2978
- Recall Micro: 0.3182
- Recall Weighted: 0.3182
- Accuracy: 0.3182
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | Precision Macro | Precision Micro | Precision Weighted | Recall Macro | Recall Micro | Recall Weighted | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.9357 | 1.0 | 58 | 1.9251 | 0.1142 | 0.2045 | 0.1326 | 0.2916 | 0.2045 | 0.3719 | 0.1805 | 0.2045 | 0.2045 | 0.2045 |
1.8428 | 2.0 | 116 | 1.9975 | 0.0864 | 0.1894 | 0.0941 | 0.0690 | 0.1894 | 0.0756 | 0.1762 | 0.1894 | 0.1894 | 0.1894 |
1.8324 | 3.0 | 174 | 1.8298 | 0.1725 | 0.2727 | 0.2132 | 0.1532 | 0.2727 | 0.1894 | 0.2191 | 0.2727 | 0.2727 | 0.2727 |
1.5574 | 4.0 | 232 | 1.7557 | 0.1128 | 0.2652 | 0.1548 | 0.0798 | 0.2652 | 0.1095 | 0.1928 | 0.2652 | 0.2652 | 0.2652 |
1.9434 | 5.0 | 290 | 1.7244 | 0.3019 | 0.3939 | 0.3572 | 0.2839 | 0.3939 | 0.3404 | 0.3375 | 0.3939 | 0.3939 | 0.3939 |
1.9357 | 6.0 | 348 | 1.6611 | 0.3208 | 0.3712 | 0.3669 | 0.3285 | 0.3712 | 0.3749 | 0.3253 | 0.3712 | 0.3712 | 0.3712 |
1.8454 | 7.0 | 406 | 1.6835 | 0.3043 | 0.3939 | 0.3397 | 0.3472 | 0.3939 | 0.3939 | 0.3515 | 0.3939 | 0.3939 | 0.3939 |
1.7616 | 8.0 | 464 | 1.8893 | 0.2312 | 0.2803 | 0.2544 | 0.3179 | 0.2803 | 0.3702 | 0.2728 | 0.2803 | 0.2803 | 0.2803 |
1.5512 | 9.0 | 522 | 1.7856 | 0.2366 | 0.3182 | 0.2696 | 0.2788 | 0.3182 | 0.3172 | 0.2820 | 0.3182 | 0.3182 | 0.3182 |
1.777 | 10.0 | 580 | 1.9182 | 0.3136 | 0.3864 | 0.3465 | 0.3176 | 0.3864 | 0.3434 | 0.3525 | 0.3864 | 0.3864 | 0.3864 |
1.3075 | 11.0 | 638 | 1.7205 | 0.3324 | 0.3939 | 0.3795 | 0.3461 | 0.3939 | 0.3893 | 0.3407 | 0.3939 | 0.3939 | 0.3939 |
0.8476 | 12.0 | 696 | 1.8083 | 0.3203 | 0.3788 | 0.3495 | 0.3297 | 0.3788 | 0.3672 | 0.3581 | 0.3788 | 0.3788 | 0.3788 |
1.0324 | 13.0 | 754 | 1.9825 | 0.3046 | 0.3485 | 0.3341 | 0.3316 | 0.3485 | 0.3807 | 0.3315 | 0.3485 | 0.3485 | 0.3485 |
1.154 | 14.0 | 812 | 2.0418 | 0.2869 | 0.3333 | 0.3151 | 0.2847 | 0.3333 | 0.3140 | 0.3064 | 0.3333 | 0.3333 | 0.3333 |
0.5406 | 15.0 | 870 | 2.1651 | 0.3242 | 0.3561 | 0.3453 | 0.3366 | 0.3561 | 0.3561 | 0.3313 | 0.3561 | 0.3561 | 0.3561 |
1.5052 | 16.0 | 928 | 2.3796 | 0.2814 | 0.3561 | 0.3228 | 0.3189 | 0.3561 | 0.3611 | 0.3127 | 0.3561 | 0.3561 | 0.3561 |
0.1641 | 17.0 | 986 | 2.2210 | 0.3286 | 0.3864 | 0.3741 | 0.3346 | 0.3864 | 0.3768 | 0.3361 | 0.3864 | 0.3864 | 0.3864 |
0.1201 | 18.0 | 1044 | 2.2744 | 0.3384 | 0.3939 | 0.3852 | 0.3331 | 0.3939 | 0.3811 | 0.3474 | 0.3939 | 0.3939 | 0.3939 |
0.1059 | 19.0 | 1102 | 2.4881 | 0.3198 | 0.3712 | 0.3485 | 0.3702 | 0.3712 | 0.3640 | 0.3244 | 0.3712 | 0.3712 | 0.3712 |
0.0828 | 20.0 | 1160 | 2.6911 | 0.3369 | 0.4091 | 0.3897 | 0.3378 | 0.4091 | 0.3826 | 0.3473 | 0.4091 | 0.4091 | 0.4091 |
0.0903 | 21.0 | 1218 | 2.9249 | 0.3351 | 0.3561 | 0.3564 | 0.3430 | 0.3561 | 0.3614 | 0.3341 | 0.3561 | 0.3561 | 0.3561 |
0.0455 | 22.0 | 1276 | 3.1538 | 0.2830 | 0.3409 | 0.3261 | 0.2951 | 0.3409 | 0.3330 | 0.2889 | 0.3409 | 0.3409 | 0.3409 |
0.0137 | 23.0 | 1334 | 3.0196 | 0.3147 | 0.3712 | 0.3598 | 0.3095 | 0.3712 | 0.3530 | 0.3246 | 0.3712 | 0.3712 | 0.3712 |
0.0088 | 24.0 | 1392 | 3.0033 | 0.3512 | 0.4015 | 0.3958 | 0.3562 | 0.4015 | 0.4024 | 0.3586 | 0.4015 | 0.4015 | 0.4015 |
0.205 | 25.0 | 1450 | 3.1499 | 0.3854 | 0.4091 | 0.3978 | 0.3923 | 0.4091 | 0.4032 | 0.3939 | 0.4091 | 0.4091 | 0.4091 |
0.0072 | 26.0 | 1508 | 3.2906 | 0.3440 | 0.3712 | 0.3651 | 0.3438 | 0.3712 | 0.3663 | 0.3516 | 0.3712 | 0.3712 | 0.3712 |
0.0019 | 27.0 | 1566 | 3.3223 | 0.3542 | 0.3712 | 0.3663 | 0.3524 | 0.3712 | 0.3673 | 0.3627 | 0.3712 | 0.3712 | 0.3712 |
0.0043 | 28.0 | 1624 | 3.2986 | 0.3729 | 0.3864 | 0.3840 | 0.3726 | 0.3864 | 0.3838 | 0.3753 | 0.3864 | 0.3864 | 0.3864 |
0.0016 | 29.0 | 1682 | 3.3453 | 0.3469 | 0.3788 | 0.3741 | 0.3504 | 0.3788 | 0.3744 | 0.3483 | 0.3788 | 0.3788 | 0.3788 |
0.0031 | 30.0 | 1740 | 3.3308 | 0.3465 | 0.3788 | 0.3753 | 0.3514 | 0.3788 | 0.3760 | 0.3456 | 0.3788 | 0.3788 | 0.3788 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for corranm/square_run_first_vote_full_pic_50
Base model
google/vit-base-patch16-224