square_run_second_vote_full_pic_50_age_gender

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6845
  • F1 Macro: 0.2886
  • F1 Micro: 0.3182
  • F1 Weighted: 0.3108
  • Precision Macro: 0.3139
  • Precision Micro: 0.3182
  • Precision Weighted: 0.3485
  • Recall Macro: 0.3032
  • Recall Micro: 0.3182
  • Recall Weighted: 0.3182
  • Accuracy: 0.3182

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro F1 Weighted Precision Macro Precision Micro Precision Weighted Recall Macro Recall Micro Recall Weighted Accuracy
1.8934 1.0 58 1.8939 0.0919 0.1970 0.1321 0.0799 0.1970 0.1097 0.1331 0.1970 0.1970 0.1970
1.851 2.0 116 2.0049 0.1066 0.1818 0.1280 0.1010 0.1818 0.1322 0.1720 0.1818 0.1818 0.1818
1.6292 3.0 174 1.8533 0.0849 0.2197 0.1086 0.0673 0.2197 0.0808 0.1568 0.2197 0.2197 0.2197
1.7267 4.0 232 1.8215 0.1715 0.2803 0.2141 0.3136 0.2803 0.3357 0.2133 0.2803 0.2803 0.2803
1.7363 5.0 290 1.8649 0.1065 0.1894 0.1268 0.1423 0.1894 0.1728 0.1730 0.1894 0.1894 0.1894
1.5974 6.0 348 1.8716 0.0916 0.25 0.1212 0.0721 0.25 0.0900 0.1746 0.25 0.25 0.25
1.8537 7.0 406 1.7017 0.2792 0.3333 0.3191 0.3181 0.3333 0.3633 0.2977 0.3333 0.3333 0.3333
1.4206 8.0 464 1.7872 0.1898 0.2727 0.2361 0.2092 0.2727 0.2442 0.2089 0.2727 0.2727 0.2727
2.1512 9.0 522 1.7402 0.2806 0.3333 0.3177 0.3019 0.3333 0.3379 0.2985 0.3333 0.3333 0.3333
1.6426 10.0 580 1.7943 0.2511 0.3106 0.2867 0.2731 0.3106 0.3042 0.2713 0.3106 0.3106 0.3106
1.5341 11.0 638 1.8591 0.2551 0.3030 0.2945 0.2564 0.3030 0.2941 0.2623 0.3030 0.3030 0.3030
1.0766 12.0 696 1.9545 0.2281 0.2955 0.2800 0.2455 0.2955 0.2902 0.2341 0.2955 0.2955 0.2955
0.8697 13.0 754 2.3504 0.1614 0.2727 0.2089 0.1739 0.2727 0.2207 0.2027 0.2727 0.2727 0.2727
0.7089 14.0 812 1.9392 0.2557 0.3409 0.3160 0.2531 0.3409 0.3054 0.2705 0.3409 0.3409 0.3409
0.9405 15.0 870 2.1086 0.2788 0.3485 0.3362 0.2945 0.3485 0.3480 0.2866 0.3485 0.3485 0.3485
0.768 16.0 928 2.1161 0.2990 0.3636 0.3599 0.3112 0.3636 0.3779 0.3073 0.3636 0.3636 0.3636
0.5405 17.0 986 2.2513 0.2757 0.3258 0.3197 0.2851 0.3258 0.3370 0.2867 0.3258 0.3258 0.3258
0.6639 18.0 1044 2.4633 0.2542 0.3106 0.3033 0.2616 0.3106 0.3156 0.2668 0.3106 0.3106 0.3106
0.1962 19.0 1102 2.5737 0.2463 0.3258 0.2995 0.2654 0.3258 0.3085 0.2575 0.3258 0.3258 0.3258
0.2221 20.0 1160 2.7099 0.2449 0.2803 0.2825 0.2577 0.2803 0.3097 0.2521 0.2803 0.2803 0.2803
0.3077 21.0 1218 2.7888 0.2527 0.3106 0.2980 0.2673 0.3106 0.3100 0.2626 0.3106 0.3106 0.3106
0.1271 22.0 1276 2.9443 0.2291 0.2652 0.2661 0.2315 0.2652 0.2727 0.2319 0.2652 0.2652 0.2652
0.1309 23.0 1334 3.0628 0.2714 0.3409 0.3305 0.3025 0.3409 0.3511 0.2700 0.3409 0.3409 0.3409
0.2454 24.0 1392 3.1552 0.2497 0.3182 0.3009 0.2573 0.3182 0.3021 0.2578 0.3182 0.3182 0.3182
0.0606 25.0 1450 3.2449 0.2319 0.2879 0.2810 0.2294 0.2879 0.2790 0.2379 0.2879 0.2879 0.2879
0.0862 26.0 1508 3.2262 0.2554 0.3182 0.3119 0.2557 0.3182 0.3114 0.2608 0.3182 0.3182 0.3182
0.0062 27.0 1566 3.2928 0.2711 0.3258 0.3251 0.2740 0.3258 0.3278 0.2719 0.3258 0.3258 0.3258
0.0427 28.0 1624 3.3795 0.2599 0.3182 0.3121 0.2595 0.3182 0.3101 0.2644 0.3182 0.3182 0.3182
0.007 29.0 1682 3.3703 0.2412 0.2955 0.2917 0.2459 0.2955 0.2940 0.2427 0.2955 0.2955 0.2955
0.0051 30.0 1740 3.4040 0.2484 0.3030 0.3003 0.2530 0.3030 0.3037 0.2500 0.3030 0.3030 0.3030

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
8
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for corranm/square_run_second_vote_full_pic_50_age_gender

Finetuned
(584)
this model