square_run_second_vote_full_pic_50_age_gender
This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.6845
- F1 Macro: 0.2886
- F1 Micro: 0.3182
- F1 Weighted: 0.3108
- Precision Macro: 0.3139
- Precision Micro: 0.3182
- Precision Weighted: 0.3485
- Recall Macro: 0.3032
- Recall Micro: 0.3182
- Recall Weighted: 0.3182
- Accuracy: 0.3182
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | Precision Macro | Precision Micro | Precision Weighted | Recall Macro | Recall Micro | Recall Weighted | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.8934 | 1.0 | 58 | 1.8939 | 0.0919 | 0.1970 | 0.1321 | 0.0799 | 0.1970 | 0.1097 | 0.1331 | 0.1970 | 0.1970 | 0.1970 |
1.851 | 2.0 | 116 | 2.0049 | 0.1066 | 0.1818 | 0.1280 | 0.1010 | 0.1818 | 0.1322 | 0.1720 | 0.1818 | 0.1818 | 0.1818 |
1.6292 | 3.0 | 174 | 1.8533 | 0.0849 | 0.2197 | 0.1086 | 0.0673 | 0.2197 | 0.0808 | 0.1568 | 0.2197 | 0.2197 | 0.2197 |
1.7267 | 4.0 | 232 | 1.8215 | 0.1715 | 0.2803 | 0.2141 | 0.3136 | 0.2803 | 0.3357 | 0.2133 | 0.2803 | 0.2803 | 0.2803 |
1.7363 | 5.0 | 290 | 1.8649 | 0.1065 | 0.1894 | 0.1268 | 0.1423 | 0.1894 | 0.1728 | 0.1730 | 0.1894 | 0.1894 | 0.1894 |
1.5974 | 6.0 | 348 | 1.8716 | 0.0916 | 0.25 | 0.1212 | 0.0721 | 0.25 | 0.0900 | 0.1746 | 0.25 | 0.25 | 0.25 |
1.8537 | 7.0 | 406 | 1.7017 | 0.2792 | 0.3333 | 0.3191 | 0.3181 | 0.3333 | 0.3633 | 0.2977 | 0.3333 | 0.3333 | 0.3333 |
1.4206 | 8.0 | 464 | 1.7872 | 0.1898 | 0.2727 | 0.2361 | 0.2092 | 0.2727 | 0.2442 | 0.2089 | 0.2727 | 0.2727 | 0.2727 |
2.1512 | 9.0 | 522 | 1.7402 | 0.2806 | 0.3333 | 0.3177 | 0.3019 | 0.3333 | 0.3379 | 0.2985 | 0.3333 | 0.3333 | 0.3333 |
1.6426 | 10.0 | 580 | 1.7943 | 0.2511 | 0.3106 | 0.2867 | 0.2731 | 0.3106 | 0.3042 | 0.2713 | 0.3106 | 0.3106 | 0.3106 |
1.5341 | 11.0 | 638 | 1.8591 | 0.2551 | 0.3030 | 0.2945 | 0.2564 | 0.3030 | 0.2941 | 0.2623 | 0.3030 | 0.3030 | 0.3030 |
1.0766 | 12.0 | 696 | 1.9545 | 0.2281 | 0.2955 | 0.2800 | 0.2455 | 0.2955 | 0.2902 | 0.2341 | 0.2955 | 0.2955 | 0.2955 |
0.8697 | 13.0 | 754 | 2.3504 | 0.1614 | 0.2727 | 0.2089 | 0.1739 | 0.2727 | 0.2207 | 0.2027 | 0.2727 | 0.2727 | 0.2727 |
0.7089 | 14.0 | 812 | 1.9392 | 0.2557 | 0.3409 | 0.3160 | 0.2531 | 0.3409 | 0.3054 | 0.2705 | 0.3409 | 0.3409 | 0.3409 |
0.9405 | 15.0 | 870 | 2.1086 | 0.2788 | 0.3485 | 0.3362 | 0.2945 | 0.3485 | 0.3480 | 0.2866 | 0.3485 | 0.3485 | 0.3485 |
0.768 | 16.0 | 928 | 2.1161 | 0.2990 | 0.3636 | 0.3599 | 0.3112 | 0.3636 | 0.3779 | 0.3073 | 0.3636 | 0.3636 | 0.3636 |
0.5405 | 17.0 | 986 | 2.2513 | 0.2757 | 0.3258 | 0.3197 | 0.2851 | 0.3258 | 0.3370 | 0.2867 | 0.3258 | 0.3258 | 0.3258 |
0.6639 | 18.0 | 1044 | 2.4633 | 0.2542 | 0.3106 | 0.3033 | 0.2616 | 0.3106 | 0.3156 | 0.2668 | 0.3106 | 0.3106 | 0.3106 |
0.1962 | 19.0 | 1102 | 2.5737 | 0.2463 | 0.3258 | 0.2995 | 0.2654 | 0.3258 | 0.3085 | 0.2575 | 0.3258 | 0.3258 | 0.3258 |
0.2221 | 20.0 | 1160 | 2.7099 | 0.2449 | 0.2803 | 0.2825 | 0.2577 | 0.2803 | 0.3097 | 0.2521 | 0.2803 | 0.2803 | 0.2803 |
0.3077 | 21.0 | 1218 | 2.7888 | 0.2527 | 0.3106 | 0.2980 | 0.2673 | 0.3106 | 0.3100 | 0.2626 | 0.3106 | 0.3106 | 0.3106 |
0.1271 | 22.0 | 1276 | 2.9443 | 0.2291 | 0.2652 | 0.2661 | 0.2315 | 0.2652 | 0.2727 | 0.2319 | 0.2652 | 0.2652 | 0.2652 |
0.1309 | 23.0 | 1334 | 3.0628 | 0.2714 | 0.3409 | 0.3305 | 0.3025 | 0.3409 | 0.3511 | 0.2700 | 0.3409 | 0.3409 | 0.3409 |
0.2454 | 24.0 | 1392 | 3.1552 | 0.2497 | 0.3182 | 0.3009 | 0.2573 | 0.3182 | 0.3021 | 0.2578 | 0.3182 | 0.3182 | 0.3182 |
0.0606 | 25.0 | 1450 | 3.2449 | 0.2319 | 0.2879 | 0.2810 | 0.2294 | 0.2879 | 0.2790 | 0.2379 | 0.2879 | 0.2879 | 0.2879 |
0.0862 | 26.0 | 1508 | 3.2262 | 0.2554 | 0.3182 | 0.3119 | 0.2557 | 0.3182 | 0.3114 | 0.2608 | 0.3182 | 0.3182 | 0.3182 |
0.0062 | 27.0 | 1566 | 3.2928 | 0.2711 | 0.3258 | 0.3251 | 0.2740 | 0.3258 | 0.3278 | 0.2719 | 0.3258 | 0.3258 | 0.3258 |
0.0427 | 28.0 | 1624 | 3.3795 | 0.2599 | 0.3182 | 0.3121 | 0.2595 | 0.3182 | 0.3101 | 0.2644 | 0.3182 | 0.3182 | 0.3182 |
0.007 | 29.0 | 1682 | 3.3703 | 0.2412 | 0.2955 | 0.2917 | 0.2459 | 0.2955 | 0.2940 | 0.2427 | 0.2955 | 0.2955 | 0.2955 |
0.0051 | 30.0 | 1740 | 3.4040 | 0.2484 | 0.3030 | 0.3003 | 0.2530 | 0.3030 | 0.3037 | 0.2500 | 0.3030 | 0.3030 | 0.3030 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for corranm/square_run_second_vote_full_pic_50_age_gender
Base model
google/vit-base-patch16-224