square_run_second_vote_full_pic_75

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4672
  • F1 Macro: 0.3451
  • F1 Micro: 0.4545
  • F1 Weighted: 0.4226
  • Precision Macro: 0.3766
  • Precision Micro: 0.4545
  • Precision Weighted: 0.4564
  • Recall Macro: 0.3721
  • Recall Micro: 0.4545
  • Recall Weighted: 0.4545
  • Accuracy: 0.4545

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro F1 Weighted Precision Macro Precision Micro Precision Weighted Recall Macro Recall Micro Recall Weighted Accuracy
1.7944 1.0 58 1.8560 0.1268 0.2424 0.1788 0.1005 0.2424 0.1425 0.1734 0.2424 0.2424 0.2424
1.8983 2.0 116 1.8865 0.1533 0.2197 0.1705 0.1708 0.2197 0.1813 0.1858 0.2197 0.2197 0.2197
1.4428 3.0 174 1.8035 0.2270 0.3030 0.2733 0.2740 0.3030 0.3193 0.2427 0.3030 0.3030 0.3030
1.5854 4.0 232 1.7041 0.2293 0.3333 0.2630 0.2292 0.3333 0.2516 0.2763 0.3333 0.3333 0.3333
1.644 5.0 290 1.6834 0.2759 0.4242 0.3362 0.2453 0.4242 0.3082 0.3601 0.4242 0.4242 0.4242
1.7673 6.0 348 1.7508 0.2257 0.3333 0.2896 0.2153 0.3333 0.2776 0.2611 0.3333 0.3333 0.3333
1.8791 7.0 406 1.6072 0.3200 0.4167 0.3759 0.3171 0.4167 0.3666 0.3494 0.4167 0.4167 0.4167
1.3323 8.0 464 1.6554 0.3265 0.4015 0.3794 0.3576 0.4015 0.4045 0.3323 0.4015 0.4015 0.4015
1.7047 9.0 522 1.7295 0.3186 0.3864 0.3716 0.3364 0.3864 0.3884 0.3275 0.3864 0.3864 0.3864
1.1897 10.0 580 1.7238 0.2782 0.3561 0.3224 0.2981 0.3561 0.3401 0.3110 0.3561 0.3561 0.3561
0.8908 11.0 638 2.1481 0.2774 0.3333 0.3266 0.3840 0.3333 0.4285 0.2900 0.3333 0.3333 0.3333
0.4492 12.0 696 1.9300 0.2862 0.3636 0.3330 0.3623 0.3636 0.3947 0.2959 0.3636 0.3636 0.3636
0.6555 13.0 754 1.8931 0.3053 0.3788 0.3670 0.3329 0.3788 0.3854 0.3084 0.3788 0.3788 0.3788
0.3586 14.0 812 2.0316 0.3475 0.4242 0.4103 0.3722 0.4242 0.4360 0.3616 0.4242 0.4242 0.4242
0.6805 15.0 870 2.0638 0.3389 0.4091 0.3917 0.3613 0.4091 0.4150 0.3572 0.4091 0.4091 0.4091
0.8902 16.0 928 2.2817 0.2992 0.3636 0.3466 0.3388 0.3636 0.4092 0.3156 0.3636 0.3636 0.3636
0.3393 17.0 986 2.4104 0.3031 0.3485 0.3527 0.3116 0.3485 0.3658 0.3015 0.3485 0.3485 0.3485
0.2469 18.0 1044 2.4341 0.3373 0.3939 0.3980 0.3472 0.3939 0.4130 0.3381 0.3939 0.3939 0.3939
0.0485 19.0 1102 2.5798 0.3454 0.4015 0.3908 0.3639 0.4015 0.4075 0.3545 0.4015 0.4015 0.4015
0.0693 20.0 1160 2.4961 0.3781 0.4470 0.4350 0.4173 0.4470 0.4664 0.3837 0.4470 0.4470 0.4470
0.0095 21.0 1218 2.7183 0.3840 0.4621 0.4510 0.4268 0.4621 0.4916 0.3868 0.4621 0.4621 0.4621
0.0078 22.0 1276 2.7620 0.3520 0.4091 0.4091 0.3617 0.4091 0.4199 0.3528 0.4091 0.4091 0.4091
0.0083 23.0 1334 2.8349 0.3507 0.4167 0.4058 0.3826 0.4167 0.4324 0.3560 0.4167 0.4167 0.4167
0.0024 24.0 1392 2.7839 0.3630 0.4167 0.4169 0.4041 0.4167 0.4515 0.3594 0.4167 0.4167 0.4167
0.0107 25.0 1450 2.8616 0.3600 0.4242 0.4212 0.3597 0.4242 0.4236 0.3653 0.4242 0.4242 0.4242
0.0014 26.0 1508 2.9104 0.3790 0.4394 0.4343 0.3870 0.4394 0.4386 0.3810 0.4394 0.4394 0.4394
0.0021 27.0 1566 2.9763 0.3778 0.4394 0.4342 0.3989 0.4394 0.4515 0.3785 0.4394 0.4394 0.4394
0.0106 28.0 1624 2.9525 0.3866 0.4545 0.4479 0.3957 0.4545 0.4533 0.3892 0.4545 0.4545 0.4545
0.0044 29.0 1682 2.9417 0.3862 0.4545 0.4438 0.3911 0.4545 0.4447 0.3930 0.4545 0.4545 0.4545
0.0019 30.0 1740 2.9399 0.3876 0.4545 0.4461 0.3937 0.4545 0.4485 0.3928 0.4545 0.4545 0.4545

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
7
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for corranm/square_run_second_vote_full_pic_75

Finetuned
(584)
this model