square_run_second_vote_full_pic_75
This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.4672
- F1 Macro: 0.3451
- F1 Micro: 0.4545
- F1 Weighted: 0.4226
- Precision Macro: 0.3766
- Precision Micro: 0.4545
- Precision Weighted: 0.4564
- Recall Macro: 0.3721
- Recall Micro: 0.4545
- Recall Weighted: 0.4545
- Accuracy: 0.4545
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | Precision Macro | Precision Micro | Precision Weighted | Recall Macro | Recall Micro | Recall Weighted | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.7944 | 1.0 | 58 | 1.8560 | 0.1268 | 0.2424 | 0.1788 | 0.1005 | 0.2424 | 0.1425 | 0.1734 | 0.2424 | 0.2424 | 0.2424 |
1.8983 | 2.0 | 116 | 1.8865 | 0.1533 | 0.2197 | 0.1705 | 0.1708 | 0.2197 | 0.1813 | 0.1858 | 0.2197 | 0.2197 | 0.2197 |
1.4428 | 3.0 | 174 | 1.8035 | 0.2270 | 0.3030 | 0.2733 | 0.2740 | 0.3030 | 0.3193 | 0.2427 | 0.3030 | 0.3030 | 0.3030 |
1.5854 | 4.0 | 232 | 1.7041 | 0.2293 | 0.3333 | 0.2630 | 0.2292 | 0.3333 | 0.2516 | 0.2763 | 0.3333 | 0.3333 | 0.3333 |
1.644 | 5.0 | 290 | 1.6834 | 0.2759 | 0.4242 | 0.3362 | 0.2453 | 0.4242 | 0.3082 | 0.3601 | 0.4242 | 0.4242 | 0.4242 |
1.7673 | 6.0 | 348 | 1.7508 | 0.2257 | 0.3333 | 0.2896 | 0.2153 | 0.3333 | 0.2776 | 0.2611 | 0.3333 | 0.3333 | 0.3333 |
1.8791 | 7.0 | 406 | 1.6072 | 0.3200 | 0.4167 | 0.3759 | 0.3171 | 0.4167 | 0.3666 | 0.3494 | 0.4167 | 0.4167 | 0.4167 |
1.3323 | 8.0 | 464 | 1.6554 | 0.3265 | 0.4015 | 0.3794 | 0.3576 | 0.4015 | 0.4045 | 0.3323 | 0.4015 | 0.4015 | 0.4015 |
1.7047 | 9.0 | 522 | 1.7295 | 0.3186 | 0.3864 | 0.3716 | 0.3364 | 0.3864 | 0.3884 | 0.3275 | 0.3864 | 0.3864 | 0.3864 |
1.1897 | 10.0 | 580 | 1.7238 | 0.2782 | 0.3561 | 0.3224 | 0.2981 | 0.3561 | 0.3401 | 0.3110 | 0.3561 | 0.3561 | 0.3561 |
0.8908 | 11.0 | 638 | 2.1481 | 0.2774 | 0.3333 | 0.3266 | 0.3840 | 0.3333 | 0.4285 | 0.2900 | 0.3333 | 0.3333 | 0.3333 |
0.4492 | 12.0 | 696 | 1.9300 | 0.2862 | 0.3636 | 0.3330 | 0.3623 | 0.3636 | 0.3947 | 0.2959 | 0.3636 | 0.3636 | 0.3636 |
0.6555 | 13.0 | 754 | 1.8931 | 0.3053 | 0.3788 | 0.3670 | 0.3329 | 0.3788 | 0.3854 | 0.3084 | 0.3788 | 0.3788 | 0.3788 |
0.3586 | 14.0 | 812 | 2.0316 | 0.3475 | 0.4242 | 0.4103 | 0.3722 | 0.4242 | 0.4360 | 0.3616 | 0.4242 | 0.4242 | 0.4242 |
0.6805 | 15.0 | 870 | 2.0638 | 0.3389 | 0.4091 | 0.3917 | 0.3613 | 0.4091 | 0.4150 | 0.3572 | 0.4091 | 0.4091 | 0.4091 |
0.8902 | 16.0 | 928 | 2.2817 | 0.2992 | 0.3636 | 0.3466 | 0.3388 | 0.3636 | 0.4092 | 0.3156 | 0.3636 | 0.3636 | 0.3636 |
0.3393 | 17.0 | 986 | 2.4104 | 0.3031 | 0.3485 | 0.3527 | 0.3116 | 0.3485 | 0.3658 | 0.3015 | 0.3485 | 0.3485 | 0.3485 |
0.2469 | 18.0 | 1044 | 2.4341 | 0.3373 | 0.3939 | 0.3980 | 0.3472 | 0.3939 | 0.4130 | 0.3381 | 0.3939 | 0.3939 | 0.3939 |
0.0485 | 19.0 | 1102 | 2.5798 | 0.3454 | 0.4015 | 0.3908 | 0.3639 | 0.4015 | 0.4075 | 0.3545 | 0.4015 | 0.4015 | 0.4015 |
0.0693 | 20.0 | 1160 | 2.4961 | 0.3781 | 0.4470 | 0.4350 | 0.4173 | 0.4470 | 0.4664 | 0.3837 | 0.4470 | 0.4470 | 0.4470 |
0.0095 | 21.0 | 1218 | 2.7183 | 0.3840 | 0.4621 | 0.4510 | 0.4268 | 0.4621 | 0.4916 | 0.3868 | 0.4621 | 0.4621 | 0.4621 |
0.0078 | 22.0 | 1276 | 2.7620 | 0.3520 | 0.4091 | 0.4091 | 0.3617 | 0.4091 | 0.4199 | 0.3528 | 0.4091 | 0.4091 | 0.4091 |
0.0083 | 23.0 | 1334 | 2.8349 | 0.3507 | 0.4167 | 0.4058 | 0.3826 | 0.4167 | 0.4324 | 0.3560 | 0.4167 | 0.4167 | 0.4167 |
0.0024 | 24.0 | 1392 | 2.7839 | 0.3630 | 0.4167 | 0.4169 | 0.4041 | 0.4167 | 0.4515 | 0.3594 | 0.4167 | 0.4167 | 0.4167 |
0.0107 | 25.0 | 1450 | 2.8616 | 0.3600 | 0.4242 | 0.4212 | 0.3597 | 0.4242 | 0.4236 | 0.3653 | 0.4242 | 0.4242 | 0.4242 |
0.0014 | 26.0 | 1508 | 2.9104 | 0.3790 | 0.4394 | 0.4343 | 0.3870 | 0.4394 | 0.4386 | 0.3810 | 0.4394 | 0.4394 | 0.4394 |
0.0021 | 27.0 | 1566 | 2.9763 | 0.3778 | 0.4394 | 0.4342 | 0.3989 | 0.4394 | 0.4515 | 0.3785 | 0.4394 | 0.4394 | 0.4394 |
0.0106 | 28.0 | 1624 | 2.9525 | 0.3866 | 0.4545 | 0.4479 | 0.3957 | 0.4545 | 0.4533 | 0.3892 | 0.4545 | 0.4545 | 0.4545 |
0.0044 | 29.0 | 1682 | 2.9417 | 0.3862 | 0.4545 | 0.4438 | 0.3911 | 0.4545 | 0.4447 | 0.3930 | 0.4545 | 0.4545 | 0.4545 |
0.0019 | 30.0 | 1740 | 2.9399 | 0.3876 | 0.4545 | 0.4461 | 0.3937 | 0.4545 | 0.4485 | 0.3928 | 0.4545 | 0.4545 | 0.4545 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for corranm/square_run_second_vote_full_pic_75
Base model
google/vit-base-patch16-224