square_run_square_run_second_vote_full_pic_stratified_vgg

This model is a fine-tuned version of timm/vgg19_bn.tv_in1k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7955
  • F1 Macro: 0.5728
  • F1 Micro: 0.6818
  • F1 Weighted: 0.6688
  • Precision Macro: 0.6169
  • Precision Micro: 0.6818
  • Precision Weighted: 0.7081
  • Recall Macro: 0.5833
  • Recall Micro: 0.6818
  • Recall Weighted: 0.6818
  • Accuracy: 0.6818

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro F1 Weighted Precision Macro Precision Micro Precision Weighted Recall Macro Recall Micro Recall Weighted Accuracy
1.3975 1.0 58 1.3856 0.3841 0.5076 0.4636 0.5158 0.5076 0.5772 0.4203 0.5076 0.5076 0.5076
1.3378 2.0 116 1.1751 0.5342 0.6212 0.6245 0.5794 0.6212 0.6773 0.5385 0.6212 0.6212 0.6212
1.2419 3.0 174 1.9097 0.4125 0.5 0.4994 0.4951 0.5 0.6007 0.4193 0.5 0.5 0.5
0.7888 4.0 232 2.3180 0.4220 0.5227 0.5014 0.4837 0.5227 0.5692 0.4493 0.5227 0.5227 0.5227
0.3674 5.0 290 2.3266 0.4577 0.5606 0.5440 0.4758 0.5606 0.5806 0.4905 0.5606 0.5606 0.5606
1.3619 6.0 348 2.4841 0.4506 0.5682 0.5545 0.6116 0.5682 0.7073 0.4684 0.5682 0.5682 0.5682
0.0152 7.0 406 2.3663 0.4958 0.5985 0.5836 0.5062 0.5985 0.5959 0.5128 0.5985 0.5985 0.5985
0.0473 8.0 464 4.0208 0.5310 0.6364 0.6166 0.5555 0.6364 0.6346 0.5377 0.6364 0.6364 0.6364
0.0005 9.0 522 3.3065 0.5385 0.6515 0.6278 0.6027 0.6515 0.6861 0.5596 0.6515 0.6515 0.6515
0.0292 10.0 580 3.3860 0.5622 0.6515 0.6537 0.5888 0.6515 0.6784 0.5595 0.6515 0.6515 0.6515
0.0001 11.0 638 3.5022 0.5771 0.6439 0.6415 0.6222 0.6439 0.6624 0.5665 0.6439 0.6439 0.6439
0.0596 12.0 696 4.5555 0.5334 0.6364 0.6313 0.5599 0.6364 0.6641 0.5455 0.6364 0.6364 0.6364
0.0 13.0 754 4.1290 0.5483 0.6515 0.6450 0.5742 0.6515 0.6685 0.5552 0.6515 0.6515 0.6515
0.0 14.0 812 3.7890 0.6120 0.6894 0.6807 0.6576 0.6894 0.7102 0.6157 0.6894 0.6894 0.6894
0.0001 15.0 870 3.8202 0.5652 0.6591 0.6607 0.6090 0.6591 0.7080 0.5695 0.6591 0.6591 0.6591
0.0 16.0 928 3.6953 0.6044 0.7121 0.6988 0.6256 0.7121 0.7140 0.6132 0.7121 0.7121 0.7121
0.3283 17.0 986 3.5991 0.6040 0.7121 0.6985 0.6185 0.7121 0.7076 0.6129 0.7121 0.7121 0.7121
0.0007 18.0 1044 4.3257 0.5279 0.6364 0.6243 0.5694 0.6364 0.6661 0.5434 0.6364 0.6364 0.6364
0.0 19.0 1102 4.0006 0.5727 0.6742 0.6683 0.5996 0.6742 0.6944 0.5805 0.6742 0.6742 0.6742
0.0 20.0 1160 3.9127 0.5786 0.6818 0.6753 0.5988 0.6818 0.6934 0.5852 0.6818 0.6818 0.6818
0.0 21.0 1218 3.7926 0.5794 0.6894 0.6781 0.5923 0.6894 0.6866 0.5874 0.6894 0.6894 0.6894
0.0 22.0 1276 3.9598 0.5880 0.6894 0.6831 0.6107 0.6894 0.7028 0.5936 0.6894 0.6894 0.6894
0.0 23.0 1334 3.9418 0.5630 0.6742 0.6597 0.5890 0.6742 0.6798 0.5729 0.6742 0.6742 0.6742
0.0001 24.0 1392 3.9533 0.5632 0.6742 0.6607 0.5802 0.6742 0.6698 0.5692 0.6742 0.6742 0.6742
0.0 25.0 1450 3.8715 0.5434 0.6591 0.6421 0.5605 0.6591 0.6516 0.5533 0.6591 0.6591 0.6591
0.0 26.0 1508 3.9542 0.5531 0.6667 0.6510 0.5757 0.6667 0.6674 0.5641 0.6667 0.6667 0.6667
0.0 27.0 1566 3.6644 0.5692 0.6894 0.6670 0.5782 0.6894 0.6708 0.5875 0.6894 0.6894 0.6894
0.0 28.0 1624 3.9299 0.5723 0.6818 0.6693 0.5927 0.6818 0.6886 0.5859 0.6818 0.6818 0.6818
0.0 29.0 1682 3.7600 0.5820 0.6970 0.6809 0.5965 0.6970 0.6910 0.5952 0.6970 0.6970 0.6970
0.0 30.0 1740 3.8283 0.5638 0.6818 0.6636 0.5796 0.6818 0.6752 0.5798 0.6818 0.6818 0.6818

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
5
Safetensors
Model size
140M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for corranm/square_run_square_run_second_vote_full_pic_stratified_vgg

Finetuned
(2)
this model