square_run_square_run_second_vote_full_pic_stratified_vgg
This model is a fine-tuned version of timm/vgg19_bn.tv_in1k on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7955
- F1 Macro: 0.5728
- F1 Micro: 0.6818
- F1 Weighted: 0.6688
- Precision Macro: 0.6169
- Precision Micro: 0.6818
- Precision Weighted: 0.7081
- Recall Macro: 0.5833
- Recall Micro: 0.6818
- Recall Weighted: 0.6818
- Accuracy: 0.6818
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | Precision Macro | Precision Micro | Precision Weighted | Recall Macro | Recall Micro | Recall Weighted | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.3975 | 1.0 | 58 | 1.3856 | 0.3841 | 0.5076 | 0.4636 | 0.5158 | 0.5076 | 0.5772 | 0.4203 | 0.5076 | 0.5076 | 0.5076 |
1.3378 | 2.0 | 116 | 1.1751 | 0.5342 | 0.6212 | 0.6245 | 0.5794 | 0.6212 | 0.6773 | 0.5385 | 0.6212 | 0.6212 | 0.6212 |
1.2419 | 3.0 | 174 | 1.9097 | 0.4125 | 0.5 | 0.4994 | 0.4951 | 0.5 | 0.6007 | 0.4193 | 0.5 | 0.5 | 0.5 |
0.7888 | 4.0 | 232 | 2.3180 | 0.4220 | 0.5227 | 0.5014 | 0.4837 | 0.5227 | 0.5692 | 0.4493 | 0.5227 | 0.5227 | 0.5227 |
0.3674 | 5.0 | 290 | 2.3266 | 0.4577 | 0.5606 | 0.5440 | 0.4758 | 0.5606 | 0.5806 | 0.4905 | 0.5606 | 0.5606 | 0.5606 |
1.3619 | 6.0 | 348 | 2.4841 | 0.4506 | 0.5682 | 0.5545 | 0.6116 | 0.5682 | 0.7073 | 0.4684 | 0.5682 | 0.5682 | 0.5682 |
0.0152 | 7.0 | 406 | 2.3663 | 0.4958 | 0.5985 | 0.5836 | 0.5062 | 0.5985 | 0.5959 | 0.5128 | 0.5985 | 0.5985 | 0.5985 |
0.0473 | 8.0 | 464 | 4.0208 | 0.5310 | 0.6364 | 0.6166 | 0.5555 | 0.6364 | 0.6346 | 0.5377 | 0.6364 | 0.6364 | 0.6364 |
0.0005 | 9.0 | 522 | 3.3065 | 0.5385 | 0.6515 | 0.6278 | 0.6027 | 0.6515 | 0.6861 | 0.5596 | 0.6515 | 0.6515 | 0.6515 |
0.0292 | 10.0 | 580 | 3.3860 | 0.5622 | 0.6515 | 0.6537 | 0.5888 | 0.6515 | 0.6784 | 0.5595 | 0.6515 | 0.6515 | 0.6515 |
0.0001 | 11.0 | 638 | 3.5022 | 0.5771 | 0.6439 | 0.6415 | 0.6222 | 0.6439 | 0.6624 | 0.5665 | 0.6439 | 0.6439 | 0.6439 |
0.0596 | 12.0 | 696 | 4.5555 | 0.5334 | 0.6364 | 0.6313 | 0.5599 | 0.6364 | 0.6641 | 0.5455 | 0.6364 | 0.6364 | 0.6364 |
0.0 | 13.0 | 754 | 4.1290 | 0.5483 | 0.6515 | 0.6450 | 0.5742 | 0.6515 | 0.6685 | 0.5552 | 0.6515 | 0.6515 | 0.6515 |
0.0 | 14.0 | 812 | 3.7890 | 0.6120 | 0.6894 | 0.6807 | 0.6576 | 0.6894 | 0.7102 | 0.6157 | 0.6894 | 0.6894 | 0.6894 |
0.0001 | 15.0 | 870 | 3.8202 | 0.5652 | 0.6591 | 0.6607 | 0.6090 | 0.6591 | 0.7080 | 0.5695 | 0.6591 | 0.6591 | 0.6591 |
0.0 | 16.0 | 928 | 3.6953 | 0.6044 | 0.7121 | 0.6988 | 0.6256 | 0.7121 | 0.7140 | 0.6132 | 0.7121 | 0.7121 | 0.7121 |
0.3283 | 17.0 | 986 | 3.5991 | 0.6040 | 0.7121 | 0.6985 | 0.6185 | 0.7121 | 0.7076 | 0.6129 | 0.7121 | 0.7121 | 0.7121 |
0.0007 | 18.0 | 1044 | 4.3257 | 0.5279 | 0.6364 | 0.6243 | 0.5694 | 0.6364 | 0.6661 | 0.5434 | 0.6364 | 0.6364 | 0.6364 |
0.0 | 19.0 | 1102 | 4.0006 | 0.5727 | 0.6742 | 0.6683 | 0.5996 | 0.6742 | 0.6944 | 0.5805 | 0.6742 | 0.6742 | 0.6742 |
0.0 | 20.0 | 1160 | 3.9127 | 0.5786 | 0.6818 | 0.6753 | 0.5988 | 0.6818 | 0.6934 | 0.5852 | 0.6818 | 0.6818 | 0.6818 |
0.0 | 21.0 | 1218 | 3.7926 | 0.5794 | 0.6894 | 0.6781 | 0.5923 | 0.6894 | 0.6866 | 0.5874 | 0.6894 | 0.6894 | 0.6894 |
0.0 | 22.0 | 1276 | 3.9598 | 0.5880 | 0.6894 | 0.6831 | 0.6107 | 0.6894 | 0.7028 | 0.5936 | 0.6894 | 0.6894 | 0.6894 |
0.0 | 23.0 | 1334 | 3.9418 | 0.5630 | 0.6742 | 0.6597 | 0.5890 | 0.6742 | 0.6798 | 0.5729 | 0.6742 | 0.6742 | 0.6742 |
0.0001 | 24.0 | 1392 | 3.9533 | 0.5632 | 0.6742 | 0.6607 | 0.5802 | 0.6742 | 0.6698 | 0.5692 | 0.6742 | 0.6742 | 0.6742 |
0.0 | 25.0 | 1450 | 3.8715 | 0.5434 | 0.6591 | 0.6421 | 0.5605 | 0.6591 | 0.6516 | 0.5533 | 0.6591 | 0.6591 | 0.6591 |
0.0 | 26.0 | 1508 | 3.9542 | 0.5531 | 0.6667 | 0.6510 | 0.5757 | 0.6667 | 0.6674 | 0.5641 | 0.6667 | 0.6667 | 0.6667 |
0.0 | 27.0 | 1566 | 3.6644 | 0.5692 | 0.6894 | 0.6670 | 0.5782 | 0.6894 | 0.6708 | 0.5875 | 0.6894 | 0.6894 | 0.6894 |
0.0 | 28.0 | 1624 | 3.9299 | 0.5723 | 0.6818 | 0.6693 | 0.5927 | 0.6818 | 0.6886 | 0.5859 | 0.6818 | 0.6818 | 0.6818 |
0.0 | 29.0 | 1682 | 3.7600 | 0.5820 | 0.6970 | 0.6809 | 0.5965 | 0.6970 | 0.6910 | 0.5952 | 0.6970 | 0.6970 | 0.6970 |
0.0 | 30.0 | 1740 | 3.8283 | 0.5638 | 0.6818 | 0.6636 | 0.5796 | 0.6818 | 0.6752 | 0.5798 | 0.6818 | 0.6818 | 0.6818 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for corranm/square_run_square_run_second_vote_full_pic_stratified_vgg
Base model
timm/vgg19_bn.tv_in1k