|
--- |
|
license: bigscience-bloom-rail-1.0 |
|
datasets: |
|
- tatsu-lab/alpaca |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
tags: |
|
- crayon |
|
- language-technologies |
|
--- |
|
|
|
# Bloom 560M Finetuned on Instructions |
|
|
|
## Credit |
|
|
|
Code 99.99% copied from |
|
|
|
|
|
*https://github.com/bofenghuang/vigogne* |
|
|
|
|
|
*https://colab.research.google.com/drive/1jCkpikz0J2o20FBQmYmAGdiKmJGOMo-o?usp=sharing#scrollTo=DpYr24pR8T_0* |
|
|
|
|
|
# Inference Code |
|
|
|
```python |
|
|
|
from peft import PeftModel |
|
from transformers import PreTrainedTokenizer, PreTrainedModel, AutoTokenizer, AutoModelForCausalLM |
|
from peft import PeftModelForCausalLM, LoraConfig |
|
from typing import Optional |
|
from transformers import GenerationConfig |
|
import torch |
|
|
|
PROMPT_DICT = { |
|
"prompt_input": ( |
|
"Below is a^n instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n" |
|
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" |
|
), |
|
"prompt_no_input": ( |
|
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n" |
|
"### Instruction:\n{instruction}\n\n### Response:\n" |
|
), |
|
} |
|
|
|
|
|
def get_model(model_name_or_path: str, load_in_8bit: bool = True, device_map="auto", |
|
cpu: bool = False) -> PreTrainedModel: |
|
if cpu: |
|
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map=device_map, |
|
low_cpu_mem_usage=True) |
|
else: |
|
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, load_in_8bit=load_in_8bit, |
|
device_map=device_map, torch_dtype=torch.float16) |
|
|
|
return model |
|
|
|
|
|
def get_peft_model(model: PreTrainedModel, lora_model_name_or_path: Optional[str] = None) -> PeftModelForCausalLM: |
|
model = PeftModel.from_pretrained(model, lora_model_name_or_path, torch_dtype=torch.float16) |
|
|
|
return model |
|
|
|
|
|
def get_tokenizer(model_name_or_path: str, max_input_len: int) -> PreTrainedTokenizer: |
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, model_max_length=max_input_len, |
|
padding_side="right", use_fast=False) |
|
|
|
return tokenizer |
|
|
|
|
|
def get_llm_inference_model(base_model_name_or_path: str, lora_model_name_or_path: str, load_in_8bit: bool, |
|
device_map) -> PeftModel: |
|
cpu = True if not torch.cuda.is_available() else False |
|
|
|
model = get_model(base_model_name_or_path, load_in_8bit, device_map, cpu=cpu) |
|
|
|
model = get_peft_model(model, lora_model_name_or_path=lora_model_name_or_path) |
|
|
|
if not load_in_8bit: |
|
model.half() |
|
|
|
model.eval() |
|
|
|
if torch.__version__ >= "2": |
|
model = torch.compile(model) |
|
|
|
return model |
|
|
|
|
|
def generate_prompt(example): |
|
return ( |
|
PROMPT_DICT["prompt_input"].format_map(example) |
|
if example["input"] |
|
else PROMPT_DICT["prompt_no_input"].format_map(example) |
|
) |
|
|
|
|
|
def infer(instruction: str, input_text: Optional[str] = None, temperature: float = 0.1, top_p: float = 0.95, |
|
max_new_tokens: int = 512, early_stopping: bool = True, do_sample: bool = True, |
|
repetition_penalty: float = 2.5) -> str: |
|
prompt = generate_prompt({"instruction": instruction, "input": input_text}) |
|
|
|
tokenized_inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
input_ids = tokenized_inputs["input_ids"].to(device) |
|
|
|
generation_config = GenerationConfig(temperature=temperature, top_p=top_p, do_sample=do_sample, |
|
repetition_penalty=repetition_penalty, early_stopping=early_stopping) |
|
|
|
with torch.inference_mode(): |
|
generation_output = model.generate(input_ids=input_ids, generation_config=generation_config, |
|
return_dict_in_generate=True, max_new_tokens=max_new_tokens) |
|
|
|
output = generation_output.sequences[0] |
|
|
|
output = tokenizer.decode(output, skip_special_tokens=True) |
|
|
|
return output.split("### Response:")[1].strip() |
|
|
|
|
|
base_model_name_or_path = "bigscience/bloom-560m" |
|
|
|
lora_model_name_or_path = "crayon-coe/alpaca-bloom-560m-en" |
|
|
|
model = get_llm_inference_model(base_model_name_or_path, lora_model_name_or_path, True, "auto") |
|
|
|
tokenizer = get_tokenizer(base_model_name_or_path, 512) |
|
|
|
context = "Write a letter expressing your love for computers" |
|
|
|
output = infer(context) |
|
|
|
print(output) |
|
|
|
# Output |
|
# I am so grateful to have been able access this wonderful computer system and its amazing features, which I can now use daily with ease. |
|
# |
|
# My heartfelt thanks go out in advance of all my friends who are using it as well. |
|
# Thank you again! |
|
|
|
``` |
|
|
|
# Training Parameters |
|
|
|
```json |
|
{ |
|
"max_input_len": 512, |
|
"load_in_8bit": True, |
|
"model_name_or_path": "bigscience/bloom-560m", |
|
"device_map": "auto", |
|
"bias": "none", |
|
"lora_dropout": 0.05, |
|
"lora_alpha": 32, |
|
"target_modules": ["query_key_value"], |
|
"task_type": "CAUSAL_LM", |
|
"lora_r": 16, |
|
"pad_to_multiple_of": 8, |
|
"num_train_epochs": 3, |
|
"learning_rate": 0.0003, |
|
"gradient_accumulation_steps": 16, |
|
"per_device_train_batch_size": 8, |
|
"val_set_size": 500, |
|
"save_steps": 200, |
|
"eval_steps": 200, |
|
"evaluation_strategy": "steps", |
|
"save_strategy": "steps" |
|
} |
|
``` |
|
|
|
# Training Code |
|
|
|
```python |
|
# coding=utf-8 |
|
# Code 99.99% copied and adapted from: |
|
# https://github.com/bofenghuang/vigogne |
|
# https://colab.research.google.com/drive/1jCkpikz0J2o20FBQmYmAGdiKmJGOMo-o?usp=sharing#scrollTo=DpYr24pR8T_0 |
|
|
|
|
|
import os |
|
import sys |
|
from dataclasses import dataclass |
|
from typing import Dict, List, Optional, Sequence |
|
|
|
import bitsandbytes as bnb |
|
import fire |
|
import torch |
|
import transformers |
|
from datasets import load_dataset |
|
from peft import LoraConfig, TaskType, get_peft_model, get_peft_model_state_dict, prepare_model_for_int8_training |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer |
|
|
|
IGNORE_INDEX = -100 |
|
DEFAULT_PAD_TOKEN = "[PAD]" |
|
|
|
PROMPT_DICT = { |
|
"prompt_input": ( |
|
"Below is a^n instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n" |
|
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" |
|
), |
|
"prompt_no_input": ( |
|
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n" |
|
"### Instruction:\n{instruction}\n\n### Response:\n" |
|
), |
|
} |
|
|
|
|
|
def generate_prompt(example): |
|
return ( |
|
PROMPT_DICT["prompt_input"].format_map(example) |
|
if example["input"] |
|
else PROMPT_DICT["prompt_no_input"].format_map(example) |
|
) |
|
|
|
|
|
# Modified from: https://github.com/bofenghuang/stanford_alpaca/blob/eb5b171d9b103a12a8e14e0edca9cbc45fe1d512/train.py#L166-L182 |
|
# Almost same to transformers.DataCollatorForSeq2Seq |
|
@dataclass |
|
class DataCollatorForSupervisedDataset(object): |
|
"""Collate examples for supervised fine-tuning.""" |
|
|
|
tokenizer: transformers.PreTrainedTokenizer |
|
pad_to_multiple_of: Optional[int] = None |
|
|
|
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: |
|
# dtype = torch.long |
|
# input_ids, labels = tuple([torch.LongTensor(instance[key]) for instance in instances] for key in ("input_ids", "labels")) |
|
input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels")) |
|
|
|
if self.pad_to_multiple_of is not None: |
|
max_length_index, max_length = max(enumerate([len(input_ids_) for input_ids_ in input_ids]), |
|
key=lambda x: x[1]) |
|
# int(math.ceil |
|
n_padding = ((max_length // self.pad_to_multiple_of) + 1) * self.pad_to_multiple_of - max_length |
|
# Pad the longest example to pad_to_multiple_of * N |
|
input_ids[max_length_index].extend([self.tokenizer.pad_token_id] * n_padding) |
|
labels[max_length_index].extend([IGNORE_INDEX] * n_padding) |
|
|
|
input_ids = [torch.LongTensor(input_ids_) for input_ids_ in input_ids] |
|
labels = [torch.LongTensor(labels_) for labels_ in labels] |
|
|
|
input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=True, |
|
padding_value=self.tokenizer.pad_token_id) |
|
labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) |
|
|
|
return dict(input_ids=input_ids, labels=labels, attention_mask=input_ids.ne(self.tokenizer.pad_token_id)) |
|
|
|
|
|
def train(model_name_or_path: str, output_dir: str, data_path: str, val_set_size: int = 500, |
|
model_max_length: int = 512, lora_r: int = 16, lora_alpha: int = 32, lora_dropout: float = 0.05, |
|
target_modules: List[str] = ["query_key_value"], num_train_epochs: int = 3, learning_rate: float = 0.0001, |
|
per_device_train_batch_size: int = 8, gradient_accumulation_steps: int = 16, **kwargs): |
|
device_map = "auto" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, load_in_8bit=True, device_map=device_map) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, model_max_length=model_max_length, |
|
padding_side="right", use_fast=False) |
|
|
|
model = prepare_model_for_int8_training(model) |
|
|
|
lora_config = LoraConfig(r=lora_r, lora_alpha=lora_alpha, target_modules=target_modules, lora_dropout=lora_dropout, |
|
bias="none", task_type=TaskType.CAUSAL_LM) |
|
|
|
model = get_peft_model(model, lora_config) |
|
|
|
model.print_trainable_parameters() |
|
|
|
# Load data |
|
data = load_dataset("json", data_files=data_path) |
|
|
|
def preprocess_function(example): |
|
# Format prompt |
|
user_prompt = generate_prompt(example) |
|
|
|
# Get prompt length for masking |
|
len_user_prompt_tokens = len(tokenizer(user_prompt, truncation=True)["input_ids"]) |
|
|
|
input_ids = tokenizer(user_prompt + example["output"] + tokenizer.eos_token, truncation=True)["input_ids"] |
|
labels = [IGNORE_INDEX] * len_user_prompt_tokens + input_ids[len_user_prompt_tokens:] |
|
|
|
return {"input_ids": input_ids, "labels": labels} |
|
|
|
if val_set_size > 0: |
|
train_val = data["train"].train_test_split(test_size=val_set_size, shuffle=True, seed=42) |
|
train_data = train_val["train"].shuffle().map(preprocess_function, remove_columns=data["train"].column_names) |
|
val_data = train_val["test"].map(preprocess_function, remove_columns=data["train"].column_names) |
|
else: |
|
train_data = data["train"].shuffle().map(preprocess_function, remove_columns=data["train"].column_names) |
|
val_data = None |
|
|
|
trainer = transformers.Trainer( |
|
model=model, |
|
train_dataset=train_data, |
|
eval_dataset=val_data, |
|
args=transformers.TrainingArguments( |
|
per_device_train_batch_size=per_device_train_batch_size, |
|
gradient_accumulation_steps=gradient_accumulation_steps, |
|
num_train_epochs=num_train_epochs, |
|
learning_rate=learning_rate, |
|
fp16=True, |
|
output_dir=output_dir, |
|
load_best_model_at_end=True if val_set_size > 0 else False, |
|
**kwargs, |
|
), |
|
data_collator=DataCollatorForSupervisedDataset(tokenizer=tokenizer, pad_to_multiple_of=8), |
|
) |
|
print(trainer.args) |
|
|
|
# Silence the warnings. Please re-enable for inference! |
|
model.config.use_cache = False |
|
|
|
old_state_dict = model.state_dict |
|
model.state_dict = (lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())).__get__(model, |
|
type(model)) |
|
|
|
if torch.__version__ >= "2" and sys.platform != "win32": |
|
model = torch.compile(model) |
|
|
|
trainer.train() |
|
|
|
model.save_pretrained(output_dir) |
|
|
|
|
|
if __name__ == "__main__": |
|
fire.Fire(train) |
|
|
|
``` |