metadata
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
- generated_from_trainer
datasets:
- biobert_json
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: NER-finetuning-BBU-CM-V1
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: biobert_json
type: biobert_json
config: Biobert_json
split: validation
args: Biobert_json
metrics:
- name: Precision
type: precision
value: 0.9299403078856425
- name: Recall
type: recall
value: 0.9512587038028923
- name: F1
type: f1
value: 0.9404787121372591
- name: Accuracy
type: accuracy
value: 0.9771331458040319
NER-finetuning-BBU-CM-V1
This model is a fine-tuned version of google-bert/bert-base-uncased on the biobert_json dataset. It achieves the following results on the evaluation set:
- Loss: 0.1111
- Precision: 0.9299
- Recall: 0.9513
- F1: 0.9405
- Accuracy: 0.9771
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.4331 | 1.0 | 612 | 0.1091 | 0.8914 | 0.9413 | 0.9156 | 0.9713 |
0.1313 | 2.0 | 1224 | 0.1077 | 0.8941 | 0.9494 | 0.9209 | 0.9718 |
0.0869 | 3.0 | 1836 | 0.0888 | 0.9308 | 0.9555 | 0.9430 | 0.9786 |
0.0726 | 4.0 | 2448 | 0.0957 | 0.9253 | 0.9578 | 0.9413 | 0.9767 |
0.0507 | 5.0 | 3060 | 0.0936 | 0.9287 | 0.9554 | 0.9419 | 0.9770 |
0.0451 | 6.0 | 3672 | 0.1051 | 0.9276 | 0.9538 | 0.9405 | 0.9762 |
0.0383 | 7.0 | 4284 | 0.1038 | 0.9218 | 0.9576 | 0.9394 | 0.9760 |
0.036 | 8.0 | 4896 | 0.1094 | 0.9245 | 0.9533 | 0.9387 | 0.9765 |
0.0284 | 9.0 | 5508 | 0.1082 | 0.9296 | 0.9516 | 0.9404 | 0.9768 |
0.0256 | 10.0 | 6120 | 0.1111 | 0.9299 | 0.9513 | 0.9405 | 0.9771 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3