Tevatron
bs=512
epoch=40
save_steps=4000
backbone=bert-base-multilingual-cased
output_dir=mlm.bs-$bs.epoch-$epoch.$backbone
WANDB_PROJECT=mlm-mrtydi-DDR \
python examples/dense-adapter/dense-adapter-train.py \
--output_dir $output_dir \
--model_name_or_path $backbone \
--tokenizer_name bert-base-multilingual-cased \
--save_steps $save_steps \
--dataset_name Tevatron/msmarco-passage \
--fp16 \
--per_device_train_batch_size $bs \
--train_n_passages 2 \
--learning_rate 1e-5 \
--q_max_len 32 \
--p_max_len 128 \
--num_train_epochs $epoch \
--logging_steps 100 \
--overwrite_output_dir \
--dataloader_num_workers 4 \