billsum-full-data / README.md
cs608's picture
update model card README.md
f3d7aff
metadata
license: apache-2.0
tags:
  - summarization
  - generated_from_trainer
datasets:
  - billsum
metrics:
  - rouge
model-index:
  - name: billsum-full-data
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: billsum
          type: billsum
          config: default
          split: train[:95%]
          args: default
        metrics:
          - name: Rouge1
            type: rouge
            value: 18.0383

billsum-full-data

This model is a fine-tuned version of facebook/bart-base on the billsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6583
  • Rouge1: 18.0383
  • Rouge2: 14.8462
  • Rougel: 17.6086
  • Rougelsum: 17.6843

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
2.1401 1.0 8101 1.8087 17.8461 14.6015 17.3956 17.4842
1.7596 2.0 16202 1.6980 18.0568 14.7833 17.6068 17.6999
1.5789 3.0 24303 1.6583 18.0383 14.8462 17.6086 17.6843

Framework versions

  • Transformers 4.29.1
  • Pytorch 2.0.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3