|
--- |
|
language: |
|
- en |
|
- zh |
|
license: other |
|
tasks: |
|
- text-generation |
|
--- |
|
<!-- markdownlint-disable first-line-h1 --> |
|
<!-- markdownlint-disable html --> |
|
<div align="center"> |
|
<h1> |
|
Baichuan 2 RAG增强 AWQ 量化 |
|
</h1> |
|
</div> |
|
|
|
# <span id="Start">快速开始/Quick Start</span> |
|
|
|
```python |
|
from awq import AutoAWQForCausalLM |
|
from transformers import AutoTokenizer, TextStreamer |
|
import time |
|
|
|
quant_path = "csdc-atl/buffer-baichuan2-13B-rag-awq-int4" |
|
# Load model |
|
model = AutoAWQForCausalLM.from_quantized(quant_path, fuse_layers=True) |
|
tokenizer = AutoTokenizer.from_pretrained(quant_path, trust_remote_code=True) |
|
|
|
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
|
prompt_template = """\ |
|
<s> |
|
{context} |
|
{question} |
|
</s> |
|
""" |
|
context = ''' |
|
“温故而知新”有四解: |
|
一为“温故才知新”,温习已学的知识,并且由其中获得新的领悟; |
|
二为“温故及知新”:一方面要温习典章故事,另一方面又努力撷取新的知识。 |
|
三为,温故,知新。随着自己阅历的丰富和理解能力的提高,回头再看以前看过的知识,总能从中体会到更多的东西。 |
|
第四,是指通过回味历史,而可以预见,以及解决未来的问题。这才是一个真正的大师应该具有的能力。 |
|
合并这四种解法,也许更为完整:在能力范围以内,尽量广泛阅览典籍,反复思考其中的涵义,对已经听闻的知识,也要定期复习,能有心得、有领悟;并且也要尽力吸收新知;如此则进可以开拓人类知识的领域,退也可以为先贤的智能赋予时代的意义。像这样融汇新旧、贯通古今方可称是“温故而知新,可以为师矣”。 |
|
也有学者以为作“温故及知新”解不太合适,因为按字面上解释,仅做到吸收古今知识而未有领悟心得,只像是知识的买卖者,不足以为师。所以我们就来看看“师”的意义:在论语中师字一共见于14章,其中意义与今日的老师相近者,除本章外还有三章。 |
|
''' |
|
question = ''' |
|
解释一下‘温故而知新’ |
|
''' |
|
|
|
start = time.time() |
|
tokens = tokenizer( |
|
prompt_template.format(context=context, question=question), |
|
return_tensors='pt' |
|
).input_ids.cuda() |
|
|
|
# Generate output |
|
generation_output = model.generate( |
|
tokens, |
|
streamer=streamer, |
|
max_new_tokens=512 |
|
) |
|
end = time.time() |
|
elapsed = end-start |
|
print('Elapsed time is %f seconds.' % elapsed) |
|
|
|
|
|
``` |
|
<hr> |