metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- automatic-speech-recognition
- genbed
- mms
- generated_from_trainer
metrics:
- wer
model-index:
- name: mms-1b-all-bem-genbed-m-model
results: []
mms-1b-all-bem-genbed-m-model
This model is a fine-tuned version of facebook/mms-1b-all on the GENBED - BEM dataset. It achieves the following results on the evaluation set:
- Loss: 0.2887
- Wer: 0.4119
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
6.6677 | 0.1379 | 100 | 1.1908 | 0.9662 |
0.7337 | 0.2759 | 200 | 0.4132 | 0.5658 |
0.5661 | 0.4138 | 300 | 0.3767 | 0.5508 |
0.523 | 0.5517 | 400 | 0.3591 | 0.5009 |
0.5391 | 0.6897 | 500 | 0.3530 | 0.5054 |
0.4978 | 0.8276 | 600 | 0.3496 | 0.5096 |
0.4737 | 0.9655 | 700 | 0.3478 | 0.5079 |
0.4878 | 1.1034 | 800 | 0.3390 | 0.4737 |
0.4737 | 1.2414 | 900 | 0.3304 | 0.4905 |
0.4603 | 1.3793 | 1000 | 0.3328 | 0.4842 |
0.4793 | 1.5172 | 1100 | 0.3252 | 0.4640 |
0.4359 | 1.6552 | 1200 | 0.3252 | 0.4659 |
0.457 | 1.7931 | 1300 | 0.3204 | 0.4717 |
0.469 | 1.9310 | 1400 | 0.3185 | 0.4697 |
0.4894 | 2.0690 | 1500 | 0.3167 | 0.4622 |
0.4386 | 2.2069 | 1600 | 0.3185 | 0.4646 |
0.4441 | 2.3448 | 1700 | 0.3099 | 0.4607 |
0.444 | 2.4828 | 1800 | 0.3154 | 0.4551 |
0.4065 | 2.6207 | 1900 | 0.3138 | 0.4623 |
0.4163 | 2.7586 | 2000 | 0.3087 | 0.4377 |
0.4518 | 2.8966 | 2100 | 0.3054 | 0.4495 |
0.4208 | 3.0345 | 2200 | 0.3037 | 0.4512 |
0.381 | 3.1724 | 2300 | 0.3074 | 0.4386 |
0.4203 | 3.3103 | 2400 | 0.2989 | 0.4244 |
0.4556 | 3.4483 | 2500 | 0.3080 | 0.4835 |
0.4143 | 3.5862 | 2600 | 0.2956 | 0.4222 |
0.4055 | 3.7241 | 2700 | 0.3023 | 0.4581 |
0.4102 | 3.8621 | 2800 | 0.2955 | 0.4412 |
0.4451 | 4.0 | 2900 | 0.2944 | 0.4181 |
0.3857 | 4.1379 | 3000 | 0.2985 | 0.4426 |
0.4071 | 4.2759 | 3100 | 0.2918 | 0.4290 |
0.4 | 4.4138 | 3200 | 0.2951 | 0.4321 |
0.4257 | 4.5517 | 3300 | 0.3035 | 0.4608 |
0.3929 | 4.6897 | 3400 | 0.2965 | 0.4131 |
0.3957 | 4.8276 | 3500 | 0.2938 | 0.4397 |
0.3974 | 4.9655 | 3600 | 0.2887 | 0.4119 |
0.3733 | 5.1034 | 3700 | 0.2890 | 0.4050 |
0.382 | 5.2414 | 3800 | 0.2917 | 0.4233 |
0.3669 | 5.3793 | 3900 | 0.2900 | 0.4313 |
Framework versions
- Transformers 4.46.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0