w2v-bert-bem-genbed-m-model

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the GENBED - BEM dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4168
  • Wer: 0.5478

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7215 1.1019 200 0.6150 0.7430
0.5519 2.2039 400 0.5605 0.7116
0.4346 3.3058 600 0.4709 0.6378
0.3545 4.4077 800 0.4686 0.5984
0.3004 5.5096 1000 0.4578 0.6203
0.2498 6.6116 1200 0.4245 0.5246
0.23 7.7135 1400 0.4168 0.5478
0.1959 8.8154 1600 0.4212 0.5230
0.1682 9.9174 1800 0.4357 0.5054
0.1459 11.0193 2000 0.4253 0.5296

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
6
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for csikasote/w2v-bert-bem-genbed-m-model

Finetuned
(250)
this model