csikasote's picture
End of training
a93f013 verified
metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - automatic-speech-recognition
  - natbed
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: w2v-bert-bem-natbed-combined-model
    results: []

w2v-bert-bem-natbed-combined-model

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the NATBED - BEM dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6289
  • Wer: 0.6078

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.0078 0.5006 200 0.9815 0.8201
0.8769 1.0013 400 0.9823 1.0433
0.805 1.5019 600 0.8306 0.8606
0.8141 2.0025 800 0.7548 0.7196
0.7132 2.5031 1000 0.7485 0.6932
0.7058 3.0038 1200 0.7280 0.6917
0.6563 3.5044 1400 0.7046 0.7045
0.6232 4.0050 1600 0.7186 0.7409
0.6093 4.5056 1800 0.7048 0.6434
0.5767 5.0063 2000 0.6521 0.6474
0.5628 5.5069 2200 0.6322 0.6018
0.5569 6.0075 2400 0.6289 0.6078
0.5156 6.5081 2600 0.6504 0.6374
0.5074 7.0088 2800 0.6638 0.6222
0.4906 7.5094 3000 0.6744 0.5884

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0