File size: 31,007 Bytes
e562c0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
import os
import sys
GPU_NUMBER = [0] # CHANGE WITH MULTIGPU
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join([str(s) for s in GPU_NUMBER])
os.environ["NCCL_DEBUG"] = "INFO"

# imports
from sklearn.model_selection import train_test_split
import datetime
import subprocess
from pathlib import Path
import math
import matplotlib.pyplot as plt
import numpy as np
import pickle
import pandas as pd
from datasets import load_from_disk, Dataset
from sklearn import preprocessing
from sklearn.metrics import accuracy_score, auc, confusion_matrix, ConfusionMatrixDisplay, roc_curve
from sklearn.model_selection import StratifiedKFold
import torch
from transformers import BertForTokenClassification
from transformers import Trainer
from transformers.training_args import TrainingArguments
from tqdm.notebook import tqdm
from sklearn.metrics import roc_curve, roc_auc_score
from geneformer import DataCollatorForGeneClassification, EmbExtractor
from geneformer.pretrainer import token_dictionary
import ast
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
from geneformer import TranscriptomeTokenizer

def vote(logit_pair):    
    a, b = logit_pair
    if a > b:
        return 0
    elif b > a:
        return 1
    elif a == b:
        return "tie"
    
def py_softmax(vector):
	e = np.exp(vector)
	return e / e.sum()
    
 # Identifies cosine similarity between two embeddings. 0 is perfectly dissimilar and 1 is perfectly similar
def similarity(tensor1, tensor2, cosine = True):
    if cosine == False:
        if tensor1.ndimension() > 1:
            tensor1 = tensor1.view(1, -1)
        if tensor2.ndimension() > 1:
            tensor2 = tensor2.view(1, -1)
        dot_product = torch.matmul(tensor1, tensor2)
        norm_tensor1 = torch.norm(tensor1)
        norm_tensor2 = torch.norm(tensor2)
        epsilon = 1e-8
        similarity = dot_product / (norm_tensor1 * norm_tensor2 + epsilon)
        similarity = (similarity.item() + 1)/2
    else:
        if tensor1.shape != tensor2.shape:
            raise ValueError("Input tensors must have the same shape.")

        # Compute cosine similarity using PyTorch's dot product function
        dot_product = torch.dot(tensor1, tensor2)
        norm_tensor1 = torch.norm(tensor1)
        norm_tensor2 = torch.norm(tensor2)
    
        # Avoid division by zero by adding a small epsilon
        epsilon = 1e-8
        similarity = dot_product / (norm_tensor1 * norm_tensor2 + epsilon)
        
    return similarity.item()
    
# Plots heatmap between different classes/labels
def plot_similarity_heatmap(similarities):
    classes = list(similarities.keys())
    classlen = len(classes)
    arr = np.zeros((classlen, classlen))
    for i, c in enumerate(classes):
        for j, cc in enumerate(classes):
            if cc == c:
                val = 1.0
            else:
                val = similarities[c][cc]
            arr[i][j] = val
        
    plt.figure(figsize=(8, 6))
    plt.imshow(arr, cmap='inferno', vmin=0, vmax=1)
    plt.colorbar()
    plt.xticks(np.arange(classlen), classes, rotation = 45, ha = 'right')
    plt.yticks(np.arange(classlen), classes)
    plt.title("Similarity Heatmap")
    plt.savefig("similarity_heatmap.png")
    
# get cross-validated mean and sd metrics
def get_cross_valid_metrics(all_tpr, all_roc_auc, all_tpr_wt):
    wts = [count/sum(all_tpr_wt) for count in all_tpr_wt]
    
    all_weighted_tpr = [a*b for a,b in zip(all_tpr, wts)]
    mean_tpr = np.sum(all_weighted_tpr, axis=0)
    mean_tpr[-1] = 1.0
    all_weighted_roc_auc = [a*b for a,b in zip(all_roc_auc, wts)]
    roc_auc = np.sum(all_weighted_roc_auc)
    roc_auc_sd = math.sqrt(np.average((all_roc_auc-roc_auc)**2, weights=wts))
    return mean_tpr, roc_auc, roc_auc_sd

def validate(data, targets, labels, nsplits, subsample_size, training_args, freeze_layers, output_dir, num_proc, num_labels, pre_model):
    # initiate eval metrics to return
    num_classes = len(set(labels))
    mean_fpr = np.linspace(0, 1, 100)
    
    # create 80/20 train/eval splits
    targets_train, targets_eval, labels_train, labels_eval = train_test_split(targets, labels ,test_size=0.25, shuffle=True)
    label_dict_train = dict(zip(targets_train, labels_train))
    label_dict_eval = dict(zip(targets_eval, labels_eval))
    
    # function to filter by whether contains train or eval labels
    def if_contains_train_label(example):
        a = label_dict_train.keys()
        b = example['input_ids']
        return not set(a).isdisjoint(b)

    def if_contains_eval_label(example):
        a = label_dict_eval.keys()
        b = example['input_ids']
        return not set(a).isdisjoint(b)
        
    # filter dataset for examples containing classes for this split
    print(f"Filtering training data")
    trainset = data.filter(if_contains_train_label, num_proc=num_proc)
    print(f"Filtered {round((1-len(trainset)/len(data))*100)}%; {len(trainset)} remain\n")
    print(f"Filtering evalation data")
    evalset = data.filter(if_contains_eval_label, num_proc=num_proc)
    print(f"Filtered {round((1-len(evalset)/len(data))*100)}%; {len(evalset)} remain\n")
    
    # minimize to smaller training sample
    training_size = min(subsample_size, len(trainset))
    trainset_min = trainset.select([i for i in range(training_size)])
    eval_size = min(training_size, len(evalset))
    half_training_size = round(eval_size/2)
    evalset_train_min = evalset.select([i for i in range(half_training_size)])
    evalset_oos_min = evalset.select([i for i in range(half_training_size, eval_size)])
        
    # label conversion functions
    def generate_train_labels(example):
        example["labels"] = [label_dict_train.get(token_id, -100) for token_id in example["input_ids"]]
        return example

    def generate_eval_labels(example):
        example["labels"] = [label_dict_eval.get(token_id, -100) for token_id in example["input_ids"]]
        return example
    
    # label datasets 
    print(f"Labeling training data")
    trainset_labeled = trainset_min.map(generate_train_labels)
    print(f"Labeling evaluation data")
    evalset_train_labeled = evalset_train_min.map(generate_eval_labels)
    print(f"Labeling evaluation OOS data")
    evalset_oos_labeled = evalset_oos_min.map(generate_eval_labels)
  
    # load model
    model = BertForTokenClassification.from_pretrained(
          pre_model,
          num_labels=num_labels,
          output_attentions = False,
          output_hidden_states = False,
    )
    if freeze_layers is not None:
        modules_to_freeze = model.bert.encoder.layer[:freeze_layers]
        for module in modules_to_freeze:
            for param in module.parameters():
                param.requires_grad = False
            
    model = model.to(device)
    
    # add output directory to training args and initiate
    training_args["output_dir"] = output_dir
    training_args_init = TrainingArguments(**training_args)
    
    # create the trainer
    trainer = Trainer(
        model=model,
        args=training_args_init,
        data_collator=DataCollatorForGeneClassification(),
        train_dataset=trainset_labeled,
        eval_dataset=evalset_train_labeled,
    )
    
    # train the gene classifier
    trainer.train()
    trainer.save_model(output_dir)
    
    fpr, tpr, interp_tpr, conf_mat = classifier_predict(trainer.model, evalset_oos_labeled, 200, mean_fpr)
    auc_score = auc(fpr, tpr)
    
    return fpr, tpr, auc_score
    
# cross-validate gene classifier
def cross_validate(data, targets, labels, nsplits, subsample_size, training_args, freeze_layers, output_dir, num_proc, num_labels, pre_model):
    # check if output directory already written to
    # ensure not overwriting previously saved model
    model_dir_test = os.path.join(output_dir, "ksplit0/models/pytorch_model.bin")
    #if os.path.isfile(model_dir_test) == True:
    #    raise Exception("Model already saved to this directory.")
    
    device = device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # initiate eval metrics to return
    num_classes = len(set(labels))
    mean_fpr = np.linspace(0, 1, 100)
    all_tpr = []
    all_roc_auc = []
    all_tpr_wt = []
    label_dicts = []
    confusion = np.zeros((num_classes,num_classes))
    
    # set up cross-validation splits
    skf = StratifiedKFold(n_splits=nsplits, random_state=0, shuffle=True)
    # train and evaluate
    iteration_num = 0
    for train_index, eval_index in tqdm(skf.split(targets, labels)):
        if len(labels) > 500:
            print("early stopping activated due to large # of training examples")
            if iteration_num == 3:
                break
                
        print(f"****** Crossval split: {iteration_num}/{nsplits-1} ******\n")
        
        # generate cross-validation splits
        targets_train, targets_eval = targets[train_index], targets[eval_index]
        labels_train, labels_eval = labels[train_index], labels[eval_index]
        label_dict_train = dict(zip(targets_train, labels_train))
        label_dict_eval = dict(zip(targets_eval, labels_eval))
        label_dicts += (iteration_num, targets_train, targets_eval, labels_train, labels_eval)
        
        # function to filter by whether contains train or eval labels
        def if_contains_train_label(example):
            a = label_dict_train.keys()
            b = example['input_ids']
            
            return not set(a).isdisjoint(b)

        def if_contains_eval_label(example):
            a = label_dict_eval.keys()
            b = example['input_ids']
            
            return not set(a).isdisjoint(b)
        
        # filter dataset for examples containing classes for this split
        print(f"Filtering training data")
        trainset = data.filter(if_contains_train_label, num_proc=num_proc)
        print(f"Filtered {round((1-len(trainset)/len(data))*100)}%; {len(trainset)} remain\n")
        print(f"Filtering evalation data")
        evalset = data.filter(if_contains_eval_label, num_proc=num_proc)
        print(f"Filtered {round((1-len(evalset)/len(data))*100)}%; {len(evalset)} remain\n")

        # minimize to smaller training sample
        training_size = min(subsample_size, len(trainset))
        trainset_min = trainset.select([i for i in range(training_size)])
        eval_size = min(training_size, len(evalset))
        half_training_size = round(eval_size/2)
        evalset_train_min = evalset.select([i for i in range(half_training_size)])
        evalset_oos_min = evalset.select([i for i in range(half_training_size, eval_size)])
        
        # label conversion functions
        def generate_train_labels(example):
            example["labels"] = [label_dict_train.get(token_id, -100) for token_id in example["input_ids"]]
            return example

        def generate_eval_labels(example):
            example["labels"] = [label_dict_eval.get(token_id, -100) for token_id in example["input_ids"]]
            return example
        
        # label datasets 
        print(f"Labeling training data")
        trainset_labeled = trainset_min.map(generate_train_labels)
        print(f"Labeling evaluation data")
        evalset_train_labeled = evalset_train_min.map(generate_eval_labels)
        print(f"Labeling evaluation OOS data")
        evalset_oos_labeled = evalset_oos_min.map(generate_eval_labels)
        
        # create output directories
        ksplit_output_dir = os.path.join(output_dir, f"ksplit{iteration_num}")
        ksplit_model_dir = os.path.join(ksplit_output_dir, "models/") 
        
        # ensure not overwriting previously saved model
        model_output_file = os.path.join(ksplit_model_dir, "pytorch_model.bin")
        #if os.path.isfile(model_output_file) == True:
        #    raise Exception("Model already saved to this directory.")

        # make training and model output directories
        subprocess.call(f'mkdir -p {ksplit_output_dir}', shell=True)
        subprocess.call(f'mkdir -p {ksplit_model_dir}', shell=True)
        
        # load model
        model = BertForTokenClassification.from_pretrained(
            pre_model,
            num_labels=num_labels,
            output_attentions = False,
            output_hidden_states = False,
        )
        if freeze_layers is not None:
            modules_to_freeze = model.bert.encoder.layer[:freeze_layers]
            for module in modules_to_freeze:
                for param in module.parameters():
                    param.requires_grad = False
                
        model = model.to(device)
        
        # add output directory to training args and initiate
        training_args["output_dir"] = ksplit_output_dir
        training_args_init = TrainingArguments(**training_args)
        
        # create the trainer
        trainer = Trainer(
            model=model,
            args=training_args_init,
            data_collator=DataCollatorForGeneClassification(),
            train_dataset=trainset_labeled,
            eval_dataset=evalset_train_labeled
        )

        # train the gene classifier
        trainer.train()
        
        # save model
        trainer.save_model(ksplit_model_dir)
        
        # evaluate model
        fpr, tpr, interp_tpr, conf_mat = classifier_predict(trainer.model, evalset_oos_labeled, 200, mean_fpr)
        
        # append to tpr and roc lists
        confusion = confusion + conf_mat
        all_tpr.append(interp_tpr)
        all_roc_auc.append(auc(fpr, tpr))
        # append number of eval examples by which to weight tpr in averaged graphs
        all_tpr_wt.append(len(tpr))
        
        iteration_num = iteration_num + 1
        
    # get overall metrics for cross-validation
    mean_tpr, roc_auc, roc_auc_sd = get_cross_valid_metrics(all_tpr, all_roc_auc, all_tpr_wt)
    return all_roc_auc, roc_auc, roc_auc_sd, mean_fpr, mean_tpr, confusion, label_dicts
    
# Computes metrics
def compute_metrics(pred):
    labels = pred.label_ids
    preds = pred.predictions.argmax(-1)
    # calculate accuracy and macro f1 using sklearn's function
    acc = accuracy_score(labels, preds)
    macro_f1 = f1_score(labels, preds, average='macro')
    
    return {
      'accuracy': acc,
      'macro_f1': macro_f1
    }

# plot ROC curve
def plot_ROC(bundled_data, title):
    plt.figure()
    lw = 2
    for roc_auc, roc_auc_sd, mean_fpr, mean_tpr, sample, color in bundled_data:
        plt.plot(mean_fpr, mean_tpr, color=color,
                 lw=lw, label="{0} (AUC {1:0.2f} $\pm$ {2:0.2f})".format(sample, roc_auc, roc_auc_sd))
                 
    plt.plot([0, 1], [0, 1], color='black', lw=lw, linestyle='--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title(title)
    plt.legend(loc="lower right")
    plt.savefig("ROC.png")
    
    return mean_fpr, mean_tpr, roc_auc
    
# plot confusion matrix
def plot_confusion_matrix(classes_list, conf_mat, title):
    display_labels = []
    i = 0
    for label in classes_list:
        display_labels += ["{0}\nn={1:.0f}".format(label, sum(conf_mat[:,i]))]
        i = i + 1
    display = ConfusionMatrixDisplay(confusion_matrix=preprocessing.normalize(conf_mat, norm="l1"), 
                                     display_labels=display_labels)
    display.plot(cmap="Blues",values_format=".2g")
    plt.title(title)
    plt.savefig("CM.png")
    
# Function to find the largest number smaller
# than or equal to N that is divisible by k
def find_largest_div(N, K):
    rem = N % K
    if(rem == 0):
        return N
    else:
        return N - rem
        
def preprocess_classifier_batch(cell_batch, max_len):
    if max_len == None:
        max_len = max([len(i) for i in cell_batch["input_ids"]])
    def pad_label_example(example):
        example["labels"] = np.pad(example["labels"], 
                                   (0, max_len-len(example["input_ids"])), 
                                   mode='constant', constant_values=-100)
        example["input_ids"] = np.pad(example["input_ids"], 
                                      (0, max_len-len(example["input_ids"])), 
                                      mode='constant', constant_values=token_dictionary.get("<pad>"))
        example["attention_mask"] = (example["input_ids"] != token_dictionary.get("<pad>")).astype(int)
        return example
    padded_batch = cell_batch.map(pad_label_example)
    return padded_batch

# forward batch size is batch size for model inference (e.g. 200)
def classifier_predict(model, evalset, forward_batch_size, mean_fpr):
    predict_logits = []
    predict_labels = []
    model.to('cpu')
    model.eval()
  
    # ensure there is at least 2 examples in each batch to avoid incorrect tensor dims
    evalset_len = len(evalset)
    max_divisible = find_largest_div(evalset_len, forward_batch_size)
    if len(evalset) - max_divisible == 1:
        evalset_len = max_divisible
    
    max_evalset_len = max(evalset.select([i for i in range(evalset_len)])["length"])
    
    for i in range(0, evalset_len, forward_batch_size):
        max_range = min(i+forward_batch_size, evalset_len)
        batch_evalset = evalset.select([i for i in range(i, max_range)])
        padded_batch = preprocess_classifier_batch(batch_evalset, max_evalset_len)
        padded_batch.set_format(type="torch")
        
        input_data_batch = padded_batch["input_ids"]
        attn_msk_batch = padded_batch["attention_mask"]
        label_batch = padded_batch["labels"]
        with torch.no_grad():
            input_ids = input_data_batch
            attn_mask = attn_msk_batch
            labels =  label_batch
            outputs = model(
                
                input_ids = input_ids,
                attention_mask = attn_mask,
                labels = labels
            )
            predict_logits += [torch.squeeze(outputs.logits.to("cpu"))]
            predict_labels += [torch.squeeze(label_batch.to("cpu"))]
            
    logits_by_cell = torch.cat(predict_logits)
    all_logits = logits_by_cell.reshape(-1, logits_by_cell.shape[2])
    labels_by_cell = torch.cat(predict_labels)
    all_labels = torch.flatten(labels_by_cell)
    logit_label_paired = [item for item in list(zip(all_logits.tolist(), all_labels.tolist())) if item[1]!=-100]
    y_pred = [vote(item[0]) for item in logit_label_paired]
    y_true = [item[1] for item in logit_label_paired]
    logits_list = [item[0] for item in logit_label_paired]
    # probability of class 1
    y_score = [py_softmax(item)[1] for item in logits_list]
    conf_mat = confusion_matrix(y_true, y_pred)
    fpr, tpr, _ = roc_curve(y_true, y_score)
    # plot roc_curve for this split
    plt.plot(fpr, tpr)
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('ROC')
    plt.show()
    # interpolate to graph
    interp_tpr = np.interp(mean_fpr, fpr, tpr)
    interp_tpr[0] = 0.0
    return fpr, tpr, interp_tpr, conf_mat 
    
def classify_genes(gene_info = "Genecorpus-30M/example_input_files/gene_info_table.csv", genes = "Genecorpus-30M/example_input_files/gene_classification/dosage_sensitive_tfs/dosage_sens_tf_labels.csv",
       corpus_30M = "Genecorpus-30M/genecorpus_30M_2048.dataset/", model = '.',
       max_input_size = 2 ** 11, max_lr = 5e-5, freeze_layers = 4, num_gpus = 1, num_proc = os.cpu_count(), geneformer_batch_size = 9, epochs = 1, filter_dataset = 50_000,
       emb_extract = True, emb_layer = 0, forward_batch = 200, filter_data = None, inference = False, k_validate = True, model_location = "230917_geneformer_GeneClassifier_dosageTF_L2048_B12_LR5e-05_LSlinear_WU500_E1_Oadamw_n10000_F4/", skip_training = False, emb_dir = 'gene_emb', output_dir = None, max_cells = 1000, num_cpus = os.cpu_count()):
      
     
    """"
    Primary Parameters
    -----------
    
    gene_info: path
        Path to gene mappings
    
    corpus_30M: path
        Path to 30M Gene Corpus
        
    model: path
        Path to pretrained GeneFormer model
        
    genes: path
        Path to csv file containing different columns of genes and the column labels
        
    inference: bool
        Whether the model should be used to run inference. If False, model will train with labeled data instead. Defaults to False
        
    k_validate: bool
        Whether the model should run k-fold validation or simply perform regular training/evaluate. Defaults to True
        
    skip_training: bool
        Whether the model should skip the training portion. Defaults to False
        
    emb_extract: bool
        WHether the model should extract embeddings for a given gene (WIP)
        
    
    Customization Parameters
    -----------
    
    freeze_layers: int
        Freezes x number of layers from the model. Default is 4 (2 non-frozen layers)
        
    filter_dataset: int
        Number of cells to filter from 30M dataset. Default is 50_000
        
    emb_layer: int
        What layer embeddings are extracted from. Default is 4
        
    filter_data: str, list
        Filters down embeddings to a single category. Default is None
        
    
    """
          
    # table of corresponding Ensembl IDs, gene names, and gene types (e.g. coding, miRNA, etc.)
    gene_info = pd.read_csv(gene_info, index_col=0)
    labels = gene_info.columns

    # create dictionaries for corresponding attributes
    gene_id_type_dict = dict(zip(gene_info["ensembl_id"],gene_info["gene_type"]))
    gene_name_id_dict = dict(zip(gene_info["gene_name"],gene_info["ensembl_id"]))
    gene_id_name_dict = {v: k for k,v in gene_name_id_dict.items()}

    # function for preparing targets and labels
    def prep_inputs(label_store, id_type):
        target_list = []
        if id_type == "gene_name":
            for key in list(label_store.keys()):
                targets = [gene_name_id_dict[gene] for gene in label_store[key] if gene_name_id_dict.get(gene) in token_dictionary]
                targets_id = [token_dictionary[gene] for gene in targets]
                target_list.append(targets_id)
        elif id_type == "ensembl_id":
            for key in list(label_store.keys()):
                targets = [gene for gene in label_store[key] if gene in token_dictionary]
                targets_id = [token_dictionary[gene] for gene in targets]
                target_list.append(targets_id)
          
        targets, labels = [], []
        for targ in target_list:
            targets = targets + targ
        targets = np.array(targets)
        for num, targ in enumerate(target_list):
            label = [num]*len(targ) 
            labels = labels + label
        labels = np.array(labels)
        unique_labels = num + 1
        
        nsplits = min(5, min([len(targ) for targ in target_list])-1)
        assert nsplits > 2
        
        return targets, labels, nsplits, unique_labels
    
    if skip_training == False:
        # preparing targets and labels for dosage sensitive vs insensitive TFs
        gene_classes = pd.read_csv(genes, header=0)
        if filter_data == None:
            labels = gene_classes.columns
        else:
            if isinstance(filter_data, list):
                labels = filter_data
            else:
                labels = [filter_data]
        label_store = {}
        
        # Dictionary for decoding labels
        decode = {i:labels[i] for i in range(len(labels))}
  
        for label in labels:
            label_store[label] = gene_classes[label].dropna()
    
        targets, labels, nsplits, unique_labels = prep_inputs(label_store, "ensembl_id")
        
        
        
        # load training dataset
        train_dataset=load_from_disk(corpus_30M)
        shuffled_train_dataset = train_dataset.shuffle(seed=42)
        subsampled_train_dataset = shuffled_train_dataset.select([i for i in range(filter_dataset)])
        lr_schedule_fn = "linear"
        warmup_steps = 500
        optimizer = "adamw"
        subsample_size = 10_000
    
        training_args = {
            "learning_rate": max_lr,
            "do_train": True,
            "evaluation_strategy": "no",
            "save_strategy": "epoch",
            "logging_steps": 10,
            "group_by_length": True,
            "length_column_name": "length",
            "disable_tqdm": False,
            "lr_scheduler_type": lr_schedule_fn,
            "warmup_steps": warmup_steps,
            "weight_decay": 0.001,
            "per_device_train_batch_size": geneformer_batch_size,
            "per_device_eval_batch_size": geneformer_batch_size,
            "num_train_epochs": epochs,
        }
        
        # define output directory path
        current_date = datetime.datetime.now()
        datestamp = f"{str(current_date.year)[-2:]}{current_date.month:02d}{current_date.day:02d}"
        
        if output_dir == None:
            training_output_dir = Path(f"{datestamp}_geneformer_GeneClassifier_dosageTF_L{max_input_size}_B{geneformer_batch_size}_LR{max_lr}_LS{lr_schedule_fn}_WU{warmup_steps}_E{epochs}_O{optimizer}_n{subsample_size}_F{freeze_layers}/")
        else:
            training_output_dir = Path(output_dir)
        
        # make output directory
        subprocess.call(f'mkdir -p {training_output_dir}', shell=True)
        
        # Places number of classes +  in directory
        num_classes = len(set(labels))
        info_list = [num_classes, decode]
        
        with open(training_output_dir / 'classes.txt', 'w') as f:
            f.write(str(info_list))
        
        subsampled_train_dataset.save_to_disk(output_dir / 'dataset')
            
        if k_validate == True:
            ksplit_model ="ksplit0/models"
            ksplit_model_test = os.path.join(training_output_dir, ksplit_model)
            #if os.path.isfile(ksplit_model_test) == True:
            #    raise Exception("Model already saved to this directory.")
                # cross-validate gene classifier
            all_roc_auc, roc_auc, roc_auc_sd, mean_fpr, mean_tpr, confusion, label_dicts = cross_validate(subsampled_train_dataset, targets, labels, nsplits, subsample_size, training_args, freeze_layers, training_output_dir, 1, unique_labels, model)
            
            bundled_data = []
            bundled_data += [(roc_auc, roc_auc_sd, mean_fpr, mean_tpr, "Geneformer", "red")]
            graph_title = " ".join([i + ' vs' if count < len(label_store) - 1 else i for count, i in enumerate(label_store)])
            fpr, tpr, auc = plot_ROC(bundled_data, 'Dosage Sensitive vs Insensitive TFs')
            print(auc)
            # plot confusion matrix
            plot_confusion_matrix(label_store, confusion, "Geneformer")
        else:    
            fpr, tpr, auc  = validate(subsampled_train_dataset, targets, labels, nsplits, subsample_size, training_args, freeze_layers, training_output_dir, 1, unique_labels, model)
            print(auc)
    
    if inference == True:
        # preparing targets and labels for dosage sensitive vs insensitive TFs
        gene_classes = pd.read_csv(genes, header=0)
        targets = []
        for column in gene_classes.columns:  
            targets += list(gene_classes[column])
        tokens = []
        for target in targets:
            try:
                tokens.append(token_dictionary[target])
            except:
                tokens.append(0)
                
        targets = torch.LongTensor([tokens])
        
          
        with open(f'{model_location}classes.txt', 'r') as f:
            info_list = ast.literal_eval(f.read())
        num_classes = info_list[0]
        labels = info_list[1]
        
        model = BertForTokenClassification.from_pretrained(
            model_location,
            num_labels=num_classes,
            output_attentions = False,
            output_hidden_states = False,
            local_files_only = True
        )
        if freeze_layers is not None:
            modules_to_freeze = model.bert.encoder.layer[:freeze_layers]
            for module in modules_to_freeze:
                for param in module.parameters():
                    param.requires_grad = False
                
        model = model.to(device)
        
        # evaluate model
        predictions = F.softmax(model(targets.to(device))["logits"], dim = -1).argmax(-1)[0]
        predictions = [labels[int(pred)] for pred in predictions]
        
        return predictions
    
    # Extracts aggregate gene embeddings for each label 
    if emb_extract == True:
        with open(f'{model_location}/classes.txt', 'r') as f:
            data = ast.literal_eval(f.read())
        num_classes = data[0]
        decode = data[1]
        
        gene_classes = pd.read_csv(genes, header=0)
        labels = gene_classes.columns
        tokenize = TranscriptomeTokenizer()
        
        label_dict = {}
        for label in labels:
            genes = gene_classes[label]
            tokenized_genes = []
            for gene in genes:
                try:
                    tokenized_genes.append(tokenize.gene_token_dict[gene])
                except:
                    continue
            label_dict[label] = tokenized_genes
      
        embex = EmbExtractor(model_type="GeneClassifier", num_classes=num_classes, emb_mode = "gene",
                             filter_data=None, max_ncells=max_cells, emb_layer=emb_layer,
                             emb_label=label_dict, labels_to_plot=list(labels), forward_batch_size=forward_batch, nproc=num_cpus)
      

        subprocess.call(f'mkdir -p {emb_dir}', shell = True)
      
        embs = embex.extract_embs(model_directory = model_location, input_data_file = model_location / 'dataset', output_directory = emb_dir, output_prefix = f"{label}_embbeddings")

        emb_dict = {label:[] for label in list(set(labels))}
        similarities = {key:{} for key in list(emb_dict.keys())}
        
        for column in embs.columns:
            remaining_cols = [k for k in embs.columns if k != column]
            for k in remaining_cols:
                embedding = torch.Tensor(embs[k])
                sim = similarity(torch.Tensor(embs[column]), embedding, cosine = True)
                similarities[column][k] = sim
        
        plot_similarity_heatmap(similarities)
        print(similarities)
        
        return similarities
    
if __name__ == '__main__':
    classify_genes(k_validate = False, inference = False, skip_training = False, emb_extract = True, output_dir = Path('gene_emb'), model_location = Path('gene_emb'), epochs = 5, gene_info = "../GeneFormer_repo/Genecorpus-30M/example_input_files/gene_info_table.csv", genes = "../GeneFormer_repo/Genecorpus-30M/example_input_files/gene_classification/dosage_sensitive_tfs/dosage_sens_tf_labels.csv", corpus_30M = "../GeneFormer_repo/Genecorpus-30M/genecorpus_30M_2048.dataset/")