lbourdois's picture
Add multilingual to the language tag
9dd4bd8
|
raw
history blame
6.17 kB
metadata
language:
  - cs
  - en
  - de
  - fr
  - tu
  - zh
  - es
  - ru
  - multilingual
license: cc-by-sa-4.0
tags:
  - Summarization
  - abstractive summarization
  - mt5-base
  - Czech
  - text2text generation
  - text generation
datasets:
  - Multilingual_large_dataset_(multilarge)
  - cnc/dm
  - xsum
  - mlsum
  - cnewsum
  - cnc
  - sumeczech
metrics:
  - rouge
  - rougeraw
  - MemesCS

mt5-base-multilingual-summarization-multilarge-cs

This model is a fine-tuned checkpoint of google/mt5-base on the Multilingual large summarization dataset focused on Czech texts to produce multilingual summaries.

Task

The model deals with a multi-sentence summary in eight different languages. With the idea of adding other foreign language documents, and by having a considerable amount of Czech documents, we aimed to improve model summarization in the Czech language. Supported languages: 'cs': '<extra_id_0>', 'en': '<extra_id_1>','de': '<extra_id_2>', 'es': '<extra_id_3>', 'fr': '<extra_id_4>', 'ru': '<extra_id_5>', 'tu': '<extra_id_6>', 'zh': '<extra_id_7>'

#Usage


## Configuration of summarization pipeline
#
def summ_config():
    cfg = OrderedDict([
        
        ## summarization model - checkpoint
        #   ctu-aic/m2m100-418M-multilingual-summarization-multilarge-cs
        #   ctu-aic/mt5-base-multilingual-summarization-multilarge-cs
        #   ctu-aic/mbart25-multilingual-summarization-multilarge-cs
        ("model_name", "ctu-aic/mbart25-multilingual-summarization-multilarge-cs"),
        
        ## language of summarization task
        #   language : string : cs, en, de, fr, es, tr, ru, zh
        ("language", "en"), 
        
        ## generation method parameters in dictionary
        #
        ("inference_cfg", OrderedDict([
            ("num_beams", 4),
            ("top_k", 40),
            ("top_p", 0.92),
            ("do_sample", True),
            ("temperature", 0.95),
            ("repetition_penalty", 1.23),
            ("no_repeat_ngram_size", None),
            ("early_stopping", True),
            ("max_length", 128),
            ("min_length", 10),
        ])),
        #texts to summarize values = (list of strings, string, dataset)
        ("texts",
            [
               "english text1 to summarize",
               "english text2 to summarize",
            ]
        ),
        #OPTIONAL: Target summaries values = (list of strings, string, None)
        ('golds',
         [
               "target english text1",
               "target english text2",
         ]),
        #('golds', None),
    ])
    return cfg

cfg = summ_config()
mSummarize = MultiSummarizer(**cfg)
summaries,scores = mSummarize(**cfg)

Dataset

Multilingual large summarization dataset consists of 10 sub-datasets mainly based on news and daily mails. For the training, it was used the entire training set and 72% of the validation set.

Train set:        3 464 563 docs
Validation set:     121 260 docs
Stats fragment avg document length avg summary length Documents
dataset compression density coverage nsent nwords nsent nwords count
cnc 7.388 0.303 0.088 16.121 316.912 3.272 46.805 750K
sumeczech 11.769 0.471 0.115 27.857 415.711 2.765 38.644 1M
cnndm 13.688 2.983 0.538 32.783 676.026 4.134 54.036 300K
xsum 18.378 0.479 0.194 18.607 369.134 1.000 21.127 225K
mlsum/tu 8.666 5.418 0.461 14.271 214.496 1.793 25.675 274K
mlsum/de 24.741 8.235 0.469 32.544 539.653 1.951 23.077 243K
mlsum/fr 24.388 2.688 0.424 24.533 612.080 1.320 26.93 425K
mlsum/es 36.185 3.705 0.510 31.914 746.927 1.142 21.671 291K
mlsum/ru 78.909 1.194 0.246 62.141 948.079 1.012 11.976 27K
cnewsum 20.183 0.000 0.000 16.834 438.271 1.109 21.926 304K

Tokenization

Truncation and padding were set to 512 tokens for the encoder (input text) and 128 for the decoder (summary).

Training

Trained based on cross-entropy loss.

Time: 3 days 20 hours
Epochs: 1080K steps = 10 (from 10)
GPUs: 4x NVIDIA A100-SXM4-40GB
eloss: 2.462 - 1.797
tloss: 17.322 - 1.578

ROUGE results per individual dataset test set:

ROUGE ROUGE-1 ROUGE-2 ROUGE-L
Precision Recall Fscore Precision Recall Fscore Precision Recall Fscore
cnc 30.62 19.83 23.44 9.94 6.52 7.67 22.92 14.92 17.6
sumeczech 27.57 17.6 20.85 8.12 5.23 6.17 20.84 13.38 15.81
cnndm 43.83 37.73 39.34 20.81 17.82 18.6 31.8 27.42 28.55
xsum 41.63 30.54 34.56 16.13 11.76 13.33 33.65 24.74 27.97
mlsum-tu- 54.4 43.29 46.2 38.78 31.31 33.23 48.18 38.44 41
mlsum-de 47.94 44.14 45.11 36.42 35.24 35.42 44.43 41.42 42.16
mlsum-fr 35.26 25.96 28.98 16.72 12.35 13.75 28.06 20.75 23.12
mlsum-es 33.37 24.84 27.52 13.29 10.05 11.05 27.63 20.69 22.87
mlsum-ru 0.79 0.66 0.66 0.26 0.2 0.22 0.79 0.66 0.65
cnewsum 24.49 24.38 23.23 6.48 6.7 6.24 24.18 24.04 22.91

USAGE

soon