test / README.md
cwaud's picture
End of training
d1912bf verified
|
raw
history blame
3.25 kB
metadata
base_model: unsloth/Llama-3.2-3B-Instruct
library_name: peft
license: llama3.2
tags:
  - axolotl
  - generated_from_trainer
model-index:
  - name: test
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Llama-3.2-3B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- path: mhenrichsen/alpaca_2k_test
  type: alpaca
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hf_mlflow_log_artifacts: true
hub_model_id: cwaud/test
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
mlflow_experiment_name: mhenrichsen/alpaca_2k_test
mlflow_tracking_uri: http://94.156.8.49:5000
model_type: LlamaForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 5
save_strategy: steps
sequence_len: 4096
special_tokens:
  pad_token: ' '
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
val_set_size: 0.05
wandb_mode: disabled
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

test

This model is a fine-tuned version of unsloth/Llama-3.2-3B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0050

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 10

Training results

Training Loss Epoch Step Validation Loss
4.8197 0.0042 1 4.6394
4.6489 0.0126 3 4.5547
4.0712 0.0253 6 2.9871
1.3689 0.0379 9 1.0050

Framework versions

  • PEFT 0.13.0
  • Transformers 4.45.1
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.0