metadata
base_model: unsloth/Llama-3.2-3B-Instruct
library_name: peft
license: llama3.2
tags:
- axolotl
- generated_from_trainer
model-index:
- name: test
results: []
See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Llama-3.2-3B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- path: mhenrichsen/alpaca_2k_test
type: alpaca
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hf_mlflow_log_artifacts: true
hub_model_id: cwaud/test
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
mlflow_experiment_name: mhenrichsen/alpaca_2k_test
mlflow_tracking_uri: http://94.156.8.49:5000
model_type: LlamaForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 5
save_strategy: steps
sequence_len: 4096
special_tokens:
pad_token: ' '
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
val_set_size: 0.05
wandb_mode: disabled
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
test
This model is a fine-tuned version of unsloth/Llama-3.2-3B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0050
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.8197 | 0.0042 | 1 | 4.6394 |
4.6489 | 0.0126 | 3 | 4.5547 |
4.0712 | 0.0253 | 6 | 2.9871 |
1.3689 | 0.0379 | 9 | 1.0050 |
Framework versions
- PEFT 0.13.0
- Transformers 4.45.1
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.20.0