StableMed is a 3 billion parameter decoder-only language model fine tuned on 18k rows of medical questions over 1 epoch.

Usage

Get started generating text with StableMed by using the following code snippet:

from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("cxllin/StableMed-3b")
model = AutoModelForCausalLM.from_pretrained(
  "stabilityai/stablelm-3b-4e1t",
  trust_remote_code=True,
  torch_dtype="auto",
)
model.cuda()
inputs = tokenizer("The weather is always wonderful", return_tensors="pt").to("cuda")
tokens = model.generate(
  **inputs,
  max_new_tokens=64,
  temperature=0.75,
  top_p=0.95,
  do_sample=True,
)
print(tokenizer.decode(tokens[0], skip_special_tokens=True))

Model Architecture

The model is a decoder-only transformer similar to the LLaMA (Touvron et al., 2023) architecture with the following modifications:

Parameters Hidden Size Layers Heads Sequence Length
2,795,443,200 2560 32 32 4096
Downloads last month
17
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Dataset used to train cxllin/StableMed-3b