cyan1de's picture
End of training
e8b8286
|
raw
history blame
2.26 kB
---
license: apache-2.0
base_model: stevhliu/my_awesome_billsum_model
tags:
- generated_from_trainer
datasets:
- multi_news
metrics:
- rouge
model-index:
- name: my_awesome_multinews_model
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: multi_news
type: multi_news
config: default
split: validation
args: default
metrics:
- name: Rouge1
type: rouge
value: 0.1416
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_multinews_model
This model is a fine-tuned version of [stevhliu/my_awesome_billsum_model](https://huggingface.co/stevhliu/my_awesome_billsum_model) on the multi_news dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8031
- Rouge1: 0.1416
- Rouge2: 0.0452
- Rougel: 0.1098
- Rougelsum: 0.1099
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 282 | 2.8803 | 0.1378 | 0.0427 | 0.1067 | 0.1067 | 19.0 |
| 3.1546 | 2.0 | 564 | 2.8260 | 0.1393 | 0.043 | 0.1077 | 0.1077 | 19.0 |
| 3.1546 | 3.0 | 846 | 2.8089 | 0.1418 | 0.0452 | 0.1096 | 0.1096 | 19.0 |
| 3.0357 | 4.0 | 1128 | 2.8031 | 0.1416 | 0.0452 | 0.1098 | 0.1099 | 19.0 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1