metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
- generated_from_trainer
datasets:
- cymen-arfor/25awr
metrics:
- wer
model-index:
- name: whisper-large-v2-ft-ca-25awr
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: cymen-arfor/25awr default
type: cymen-arfor/25awr
args: default
metrics:
- name: Wer
type: wer
value: 0.40249424956871765
whisper-large-v2-ft-ca-25awr
This model is a fine-tuned version of openai/whisper-large-v2 on the cymen-arfor/25awr default dataset. It achieves the following results on the evaluation set:
- Loss: 0.8440
- Wer: 0.4025
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.4138 | 1.6488 | 1000 | 0.5216 | 0.5082 |
0.1535 | 3.2976 | 2000 | 0.5362 | 0.4263 |
0.084 | 4.9464 | 3000 | 0.5920 | 0.4038 |
0.0185 | 6.5952 | 4000 | 0.7443 | 0.4076 |
0.0038 | 8.2440 | 5000 | 0.8440 | 0.4025 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3