Text Generation
English
Eval Results
Edit model card

This is a d-Matrix functional reference of the GPT2 model family, with the following revisions:

The reference provides the following functional configurations:

Configuration Explanation
BASELINE a reference functionally equivalent to the original model
BASIC all linear algebraic operands quantized to BFP16-64, and all other operations transformed to approximated kernel simulations

Usage

Install d-Matrix Dmx_Compressor first.

pip install dmx_compressor

The following is an example model and its evaluation.

from dmx.compressor.dmx import pipeline

pipe = pipeline(
    task="text-generation",
    model="d-matrix/gpt2",
    revision="gpt2-xl",  # see above for other variants
    dmx_config="BASELINE",  # see above for other variants
)

results = pipe.evaluate(
    metric="d-matrix/dmx_perplexity",
    dataset="wikitext",
    dataset_version="wikitext-2-raw-v1",
)

Evaluation results

  • perplexity on penn_treebank

    Revision \ Configuration BASELINE BASIC
    distilgpt2 63.46 64.13
    gpt2 35.77 35.93
    gpt2-medium 27.06 27.10
    gpt2-large 23.03 23.04
    gpt2-xl 21.01 21.02
  • perplexity on wikitext2

    Revision \ Configuration BASELINE BASIC
    distilgpt2 46.06 46.44
    gpt2 29.94 30.08
    gpt2-medium 21.71 21.73
    gpt2-large 19.42 19.43
    gpt2-xl 17.40 17.40
  • perplexity on wikitext103

    Revision \ Configuration BASELINE BASIC
    distilgpt2 46.06 46.44
    gpt2 29.94 30.08
    gpt2-medium 21.71 21.73
    gpt2-large 19.43 19.43
    gpt2-xl 17.40 17.40
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Datasets used to train d-matrix/gpt2

Evaluation results